Do you want to publish a course? Click here

Influence of oceanic turbulence on propagation of autofocusing Airy beam with power exponential phase vortex

98   0   0.0 ( 0 )
 Added by Xinguang Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

According to Rytov approximation theory, we derive the analytical expression of the detection probability of the autofocusing Airy beam (AAB) with powerexponent-phase carrying orbital angular momentum (OAM) mode, AAB-PEPV. We analyze the influence of oceanic turbulence on the propagation characteristics of the AAB-PEPV. The results show that the AAB-PEPV beam has a higher detection probability at the receiver when the anisotropic ocean turbulence has a larger unit mass fluid dynamic energy dissipation rate, a larger internal ratio factor, and a higher anisotropy factor. At the same time, the detection probability decreases with the temperature change dissipation rate, the temperature and salinity contribution to the refractive index spectrum. In addition, the larger power exponential phase and the longer wavelength the AAB-PEPV beam has, the better anti-interference the AAB-PEPV beam has.



rate research

Read More

279 - Chuangjie Xu 2020
In this letter, we introduce a new class of light beam, the circular symmetric Airy beam (CSAB), which arises from the extensions of the one dimensional (1D) spectrum of Airy beam from rectangular coordinates to cylindrical ones. The CSAB propagates at initial stages with a single central lobe that autofocuses and then defocuses into the multi-rings structure. Then, these multi-rings perform the outward accelerations during the propagation. That means the CSAB has the inverse propagation of the abruptly autofocusing Airy beam. Besides, the propagation features of the circular symmetric Airy vortex beam (CSAVB) also have been investigated in detail. Our results offer a complementary tool with respect to the abruptly autofocusing Airy beam for practical applications.
We introduce axisymmetric Airy-Gaussian vortex beams in a model of an optical system based on the (2+1)-dimensional fractional Schrodinger equation, characterized by its Levy index (LI). By means of numerical methods, we explore propagation dynamics of the beams with vorticities from 0 to 4. The propagation leads to abrupt autofocusing, followed by its reversal (rebound from the center). It is shown that LI, the relative width of the Airy and Gaussian factors, and the vorticity determine properties of the autofocusing dynamics, including the focusing distance, radius of the focal light spot, and peak intensity at the focus. A maximum of the peak intensity is attained at intermediate values of LI, close to LI=1.4 . Dynamics of the abrupt autofocusing of Airy-Gaussian beams carrying vortex pairs (split double vortices) is considered too.
Fractional vortex beams (FVBs) with non-integer topological charges attract much attention due to unique features of propagations, but there still exist different viewpoints on the change of their total vortex strength. Here we have experimentally demonstrated the distribution and number of vortices contained in FVBs at Fraunhofer diffraction region. We have verified that the jumps of total vortex strength for FVBs happens only when non-integer topological charge is before and after (but very close to) any even integer number, which originates from two different mechanisms for generation and movement of vortices on focal plane. Meanwhile, we have also measured the beam propagation factor (BPF) of such FVBs, and have found that their BPF values almost increase linearly in one component and oscillate increasingly in another component. Our experimental results are in good agreement with numerical results.
We theoretically and experimentally studied a novel class of vortex beams named open vortex beams (OVBs). Such beams are generated using Gaussian beams diffracted by partially blocked fork-shaped gratings (PB-FSGs).The analytical model of OVBs in the near field and far field is given by superpositions of Hypergeometric (HyG) modes. Unlike conventional integer and fractional vortex beams, the OVBs can have both an open ring structure and an integer topological charge (TC). The TC is decided by the circumference covered by the open ring. It is also quantitatively shown that a $pi/2$ rotation of the open ring occurs in the propagation of an OVB due to the Gouy phase shift. Futhermore, we demonstrate experimental generation and detection of OVBs. Our experimental results are in very good agreement with the theory. We believe that the OVB can be the potential candidate for numerous applications, such as particle manipulation, quantum information and optical metrology.
Atmospheric turbulence generally limits free-space optical (FSO) communications, and this problem is severely exacerbated when implementing highly sensitive and spectrally efficient coherent detection. Specifically, turbulence induces power coupling from the transmitted Gaussian mode to higher-order Laguerre-Gaussian (LG) modes, resulting in a significant decrease of the power that mixes with a single-mode local oscillator (LO). Instead, we transmit a frequency-offset Gaussian pilot tone along with the data signal, such that both experience similar turbulence and modal power coupling. Subsequently, the photodetector (PD) optoelectronically mixes all corresponding pairs of the beams modes. During mixing, a conjugate of the turbulence experienced by the pilot tone is automatically generated and compensates the turbulence experienced by the data, and nearly all orders of the same corresponding modes efficiently mix. We demonstrate a 12-Gbit/s 16-quadrature-amplitude-modulation (16-QAM) polarization-multiplexed (PolM) FSO link that exhibits resilience to emulated turbulence. Experimental results for turbulence D/r_0~5.5 show up to ~20 dB reduction in the mixing power loss over a conventional coherent receiver. Therefore, our approach automatically recovers nearly all the captured data power to enable high-performance coherent FSO systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا