Do you want to publish a course? Click here

Current distribution across type II superconducting films: a new vortex-free critical state

71   0   0.0 ( 0 )
 Added by Jeff Tallon
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The current distribution across the thickness of a current-carrying rectangular film in the Meissner state was established long ago by the London brothers. The distribution across the width is more complicated but was later shown to be highly non-uniform, diverging at the edges. Accordingly, the standard view for type II superconductors is that vortices enter at the edges and, with increasing current, are driven inwards until they self-annihilate at the centre, causing dissipation. This condition is presumed to define the critical current. However we have shown that, under self-field (no external field), the transport critical current is a London surface current where the surface current density equals the critical field divided by {lambda}, across the entire width. The critical current distribution must therefore be uniform. Here we report studies of the current and field distribution across commercial YBa2Cu3O7 conductors and confirm the accepted non-uniform distribution at low current but demonstrate a radical crossover to a uniform distribution at critical current. This crossover ends discontinuously at a singularity and calculations quantitatively confirm these results in detail. The onset of self-field dissipation is, unexpectedly, thermodynamic in character and the implied vortex-free critical state seems to require new physics.



rate research

Read More

In a class of type II superconductor films, the critical current is determined by the Bean-Livingston barrier posed by the film surfaces to vortex penetration into the sample. A bulk property thus depends sensitively on the surface or interface to an adjacent material. We theoretically investigate the dependence of vortex barrier and critical current in such films on the Rashba spin-orbit coupling at their interfaces with adjacent materials. Considering an interface with a magnetic insulator, we find the spontaneous supercurrent resulting from the Zeeman field and interfacial spin-orbit coupling to substantially modify the vortex surface barrier. Thus, we show that the critical currents in superconductor-magnet heterostructures can be controlled, and even enhanced, via the interfacial spin-orbit coupling. Since the latter can be controlled via a gate voltage, our analysis predicts a class of heterostructures amenable to gate-voltage modulation of superconducting critical currents. It also sheds light on the recently observed gate-voltage enhancement of critical current in NbN superconducting films.
100 - G. Grimaldi , A. Leo , D. Zola 2010
We measure current-voltage characteristics as function of magnetic field and temperature in Nb strips of different thickness and width. The instability voltage of the flux flow state related to the vortex critical velocity v* is studied and compared with the Larkin-Ovchinnikov theory. Beside the usual power-law dependence v* ~ B^-1/2, in the low field range a new cross-over field, Bcr1, is observed below which v* decreases by further lowering the external magnetic field B. We ascribe this unexpected cross-over to vortex channeling due to a fan-like penetration of the applied magnetic field as confirmed by magneto-optic imaging. The observation of Bcr1 becomes a direct evidence of a general feature in type-II superconducting films at low fields, that is a channel-like vortex motion induced by the inhomogeneous magnetic state caused by the relatively strong pinning.
592 - T. Maniv , V. Zhuravlev 2012
It is shown that coherent scatterings by an ordered vortex lattice are critically enhanced for quasi particles moving in cyclotron orbits on the Fermi surface through vortex core regions, thus generating significant quasi-periodic oscillating contributions to the SC free energy as a function of the inverse magnetic field. The mean frequency of the oscillation provides a fingerprint of the vortex lattice geometry. Vortex-lattice disorder, tends to suppress this oscillatory component.
Interactions between vortices in thin superconducting films are investigated in the crossover (intertype) regime between superconductivity types I and II. We consider two main factors responsible for this crossover: a) changes in the material characteristics of the film and b) variations of the film thickness controlling the effect of the stray magnetic fields outside superconducting sample. The analysis is done within the formalism that combines the perturbation expansion of the microscopic equations to one order beyond the Ginzburg-Landau theory with the leading contribution of the stray fields. It is shown that the latter gives rise to qualitatively different spatial profile and temperature dependence of the vortex interaction potential, as compared to bulk vortex interactions. The resulting interaction is long-range repulsive while exhibiting complex competition of attraction and repulsion at small and intermediate separations of vortices. This explains the appearance of vortex chains reported earlier for superconducting films.
112 - John R. Clem 2011
I introduce a critical-state theory incorporating both flux cutting and flux transport to calculate the magnetic-field and current-density distributions inside a type-II superconducting cylinder at its critical current in a longitudinal applied magnetic field. The theory is an extension of the elliptic critical-state model introduced by Romero-Salazar and Perez-Rodriguez. The vortex dynamics depend in detail upon two nonlinear effective resistivities for flux cutting (rho_parallel) and flux flow (rho_perp), and their ratio r = rho_parallel/rho_perp. When r < 1, the low relative efficiency of flux cutting in reducing the magnitude of the internal magnetic-flux density leads to a paramagnetic longitudinal magnetic moment. As a model for understanding the experimentally observed interrelationship between the critical currents for flux cutting and depinning, I calculate the forces on a helical vortex arc stretched between two pinning centers when the vortex is subjected to a current density of arbitrary angle phi. Simultaneous initiation of flux cutting and flux transport occurs at the critical current density J_c(phi) that makes the vortex arc unstable.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا