Do you want to publish a course? Click here

Sweeping reciprocal vortex lattice across the Fermi surface: A new magnetoquantum oscillations effect in the superconducting state

593   0   0.0 ( 0 )
 Added by Vladimir Zhuravlev
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

It is shown that coherent scatterings by an ordered vortex lattice are critically enhanced for quasi particles moving in cyclotron orbits on the Fermi surface through vortex core regions, thus generating significant quasi-periodic oscillating contributions to the SC free energy as a function of the inverse magnetic field. The mean frequency of the oscillation provides a fingerprint of the vortex lattice geometry. Vortex-lattice disorder, tends to suppress this oscillatory component.



rate research

Read More

The current distribution across the thickness of a current-carrying rectangular film in the Meissner state was established long ago by the London brothers. The distribution across the width is more complicated but was later shown to be highly non-uniform, diverging at the edges. Accordingly, the standard view for type II superconductors is that vortices enter at the edges and, with increasing current, are driven inwards until they self-annihilate at the centre, causing dissipation. This condition is presumed to define the critical current. However we have shown that, under self-field (no external field), the transport critical current is a London surface current where the surface current density equals the critical field divided by {lambda}, across the entire width. The critical current distribution must therefore be uniform. Here we report studies of the current and field distribution across commercial YBa2Cu3O7 conductors and confirm the accepted non-uniform distribution at low current but demonstrate a radical crossover to a uniform distribution at critical current. This crossover ends discontinuously at a singularity and calculations quantitatively confirm these results in detail. The onset of self-field dissipation is, unexpectedly, thermodynamic in character and the implied vortex-free critical state seems to require new physics.
349 - S. Graser , T. Dahm , N. Schopohl 2003
We study the influence of Fermi surface topology on the quasiparticle density of states in the vortex state of type II superconductors. We observe that the field dependence and the shape of the momentum and spatially averaged density of states is affected significantly by the topology of the Fermi surface. We show that this behavior can be understood in terms of characteristic Fermi surface functions and that an important role is played by the number of points on the Fermi surface at which the Fermi velocity is directed parallel to the magnetic field. A critical comparison is made with a broadened BCS type density of states, that has been used frequently in analysis of tunneling data. We suggest a new formula as a replacement for the broadened BCS model for the special case of a cylindrical Fermi surface. We apply our results to the two gap superconductor MgB$_2$ and show that in this particular case the field dependence of the partial densities of states of the two gaps behaves very differently due to the different topologies of the corresponding Fermi surfaces, in qualitative agreement with recent tunneling experiments.
$ $The critical current of a Josephson junction is an oscillatory function of the enclosed magnetic flux $Phi$, because of quantum interference modulated with periodicity $h/2e$. We calculate these Fraunhofer oscillations in a two-dimensional (2D) ballistic superconductor--normal-metal--superconductor (SNS) junction. For a Fermi circle the amplitude of the oscillations decays as $1/Phi$ or faster. If the Fermi circle is strongly warped, as it is on a square lattice near the band center, we find that the amplitude decays slower $propto 1/sqrtPhi$ when the magnetic length $l_m=sqrt{hbar/eB}$ drops below the separation $L$ of the NS interfaces. The crossover to the slow decay of the critical current is accompanied by the appearance of a 2D array of current vortices and antivortices in the normal region, which form a bipartite rectangular lattice with lattice constant $simeq l_m^2/L$. The 2D lattice vanishes for a circular Fermi surface, when only the usual single row of Josephson vortices remains.
We report extensive measurements of quantum oscillations in the normal state of the Fe-based superconductor LaFePO, (Tc ~ 6 K) using low temperature torque magnetometry and transport in high static magnetic fields (45 T). We find that the Fermi surface is in broad agreement with the band-structure calculations with the quasiparticle mass enhanced by a factor ~2. The quasi-two dimensional Fermi surface consist of nearly-nested electron and hole pockets, suggesting proximity to a spin/charge density wave instability.
In order to understand the origin of superconductivity, it is crucial to ascertain the nature and origin of the primary carriers available to participate in pairing. Recent quantum oscillation experiments on high Tc cuprate superconductors have revealed the existence of a Fermi surface akin to normal metals, comprising fermionic carriers that undergo orbital quantization. However, the unexpectedly small size of the observed carrier pocket leaves open a variety of possibilities as to the existence or form of any underlying magnetic order, and its relation to d-wave superconductivity. Here we present quantum oscillations in the magnetisation (the de Haas-van Alphen or dHvA effect) observed in superconducting YBa2Cu3O6.51 that reveal more than one carrier pocket. In particular, we find evidence for the existence of a much larger pocket of heavier mass carriers playing a thermodynamically dominant role in this hole-doped superconductor. Importantly, characteristics of the multiple pockets within this more complete Fermi surface impose constraints on the wavevector of any underlying order and the location of the carriers in momentum space. These constraints enable us to construct a possible density-wave scenario with spiral or related modulated magnetic order, consistent with experimental observations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا