No Arabic abstract
Manipulating magnetic domains is essential for many technological applications. Recent breakthroughs in Antiferromagnetic Spintronics brought up novel concepts for electronic device development. Imaging antiferromagnetic domains is of key importance to this field. Unfortunately, some of the basic domain types, such as antiphase domains, cannot be imaged by conventional techniques. Herein, we present a new domain projection imaging technique based on the localization of domain boundaries by resonant magnetic diffraction of coherent x rays. Contrast arises from reduction of the scattered intensity at the domain boundaries due to destructive interference effects. We demonstrate this approach by imaging antiphase domains in a collinear antiferromagnet Fe2Mo3O8, and observe evidence of domain wall interaction with a structural defect. This technique does not involve any numerical algorithms. It is fast, sensitive, produces large-scale images in a single-exposure measurement, and is applicable to a variety of magnetic domain types.
Bragg coherent diffraction imaging (BCDI), the well-established technique for imaging internal strain of nanoparticles, was used to image the internal compositional distribution of binary alloys in thermal equilibrium. The images experimentally obtained for Pd-Rh alloy nanoparticles are presented and discussed. The direct correspondence between the lattice strain and the compositional deviation is discussed in the derivation of the BCDI displacement field aided by illustrations.
The control of domain walls or spin textures is crucial for spintronic applications of antiferromagnets. Despite many efforts, it has been challenging to directly visualize antiferromagnetic domains or domain walls with nanoscale resolution, especially in magnetic field. Here, we report magnetic imaging of domain walls in several uniaxial antiferromagnets, the topological insulator MnBi$_2$Te$_4$ family and the Dirac semimetal EuMnBi$_2$, using cryogenic magnetic force microscopy (MFM). Our MFM results reveal higher magnetic susceptibility or net moments inside the domain walls than in domains. Domain walls in these antiferromagnets form randomly with strong thermal and magnetic field dependences. The direct visualization of domain walls and domain structure in magnetic field will not only facilitate the exploration of intrinsic phenomena in topological antiferromagnets, but also open a new path toward control and manipulation of domain walls or spin textures in functional antiferromagnets.
Anti-site disorder is one of the most important issues that arises in synthesis of double perovskite for spintronic applications. Although it is known that anti-site disorder leads to a proliferation of structural defects, known as the anti-phase boundaries that separate ordered anti-phase domains in the sample, little is known about the magnetic correlation across these anti-phase boundaries on a microscopic level. Motivated by this, we report resonant elastic X-ray scattering study of room temperature magnetic and structural correlation in a thin-film sample of Sr$_2$CrReO$_6$, which has one of the highest $mathrm{T_C}$ among double perovskites. Structurally, we discovered existence of anti-phase nanodomains of $sim$15~nm in the sample. Magnetically, the ordered moments are shown to lie perpendicular to the $c$ direction. Most remarkably, we found that the magnetic correlation length far exceeds the size of individual anti-phase nanodomains. Our results therefore provide conclusive proof for existence of robust magnetic correlation across the anti-phase boundaries in Sr$_2$CrReO$_6$.
Coherent X-ray beams with energies $geq 50$ keV can potentially enable three-dimensional imaging of atomic lattice distortion fields within individual crystallites in bulk polycrystalline materials through Bragg coherent diffraction imaging (BCDI). However, the undersampling of the diffraction signal due to Fourier space compression at high X-ray energies renders conventional phase retrieval algorithms unsuitable for three-dimensional reconstruction. To address this problem we utilize a phase retrieval method with a Fourier constraint specifically tailored for undersampled diffraction data measured with coarse-pitched detector pixels that bin the underlying signal. With our approach, we show that it is possible to reconstruct three-dimensional strained crystallites from an undersampled Bragg diffraction data set subject to pixel-area integration without having to physically upsample the diffraction signal. Using simulations and experimental results, we demonstrate that explicit modeling of Fourier space compression during phase retrieval provides a viable means by which to invert high-energy BCDI data, which is otherwise intractable.
Using higher-order coherence of thermal light sources, the resolution power of standard x-ray imaging techniques can be enhanced. In this work, we applied the higher-order measurement to far-field x-ray diffraction and near-field phase contrast imaging (PCI), in order to achieve superresolution in x-ray diffraction and obtain enhanced intensity contrast in PCI. The cost of implementing such schemes is minimal compared to the methods that achieve similar effects by using entangled x-ray photon pairs.