No Arabic abstract
There are different inequivalent ways to define the Renyi capacity of a channel for a fixed input distribution $P$. In a 1995 paper Csiszar has shown that for classical discrete memoryless channels there is a distinguished such quantity that has an operational interpretation as a generalized cutoff rate for constant composition channel coding. We show that the analogous notion of Renyi capacity, defined in terms of the sandwiched quantum Renyi divergences, has the same operational interpretation in the strong converse problem of classical-quantum channel coding. Denoting the constant composition strong converse exponent for a memoryless classical-quantum channel $W$ with composition $P$ and rate $R$ as $sc(W,R,P)$, our main result is that [ sc(W,R,P)=sup_{alpha>1}frac{alpha-1}{alpha}left[R-chi_{alpha}^*(W,P)right], ] where $chi_{alpha}^*(W,P)$ is the $P$-weighted sandwiched Renyi divergence radius of the image of the channel.
We present two general approaches to obtain the strong converse rate of quantum hypothesis testing for correlated quantum states. One approach requires that the states satisfy a certain factorization property; typical examples of such states are the temperature states of translation-invariant finite-range interactions on a spin chain. The other approach requires the differentiability of a regularized Renyi $alpha$-divergence in the parameter $alpha$; typical examples of such states include temperature states of non-interacting fermionic lattice systems, and classical irreducible Markov chains. In all cases, we get that the strong converse exponent is equal to the Hoeffding anti-divergence, which in turn is obtained from the regularized Renyi divergences of the two states.
Designing encoding and decoding circuits to reliably send messages over many uses of a noisy channel is a central problem in communication theory. When studying the optimal transmission rates achievable with asymptotically vanishing error it is usually assumed that these circuits can be implemented using noise-free gates. While this assumption is satisfied for classical machines in many scenarios, it is not expected to be satisfied in the near term future for quantum machines where decoherence leads to faults in the quantum gates. As a result, fundamental questions regarding the practical relevance of quantum channel coding remain open. By combining techniques from fault-tolerant quantum computation with techniques from quantum communication, we initiate the study of these questions. We introduce fault-tolera
Optimally encoding classical information in a quantum system is one of the oldest and most fundamental challenges of quantum information theory. Holevos bound places a hard upper limit on such encodings, while the Holevo-Schumacher-Westmoreland (HSW) theorem addresses the question of how many classical messages can be packed into a given quantum system. In this article, we use Sens recent quantum joint typicality results to prove a one-shot multiparty quantum packing lemma generalizing the HSW theorem. The lemma is designed to be easily applicable in many network communication scenarios. As an illustration, we use it to straightforwardly obtain quantum generalizations of well-known classical coding schemes for the relay channel: multihop, coherent multihop, decode-forward, and partial decode-forward. We provide both finite blocklength and asymptotic results, the latter matching existing classical formulas. Given the key role of the classical packing lemma in network information theory, our packing lemma should help open the field to direct quantum generalization.
We prove that the classical capacity of an arbitrary quantum channel assisted by a free classical feedback channel is bounded from above by the maximum average output entropy of the quantum channel. As a consequence of this bound, we conclude that a classical feedback channel does not improve the classical capacity of a quantum erasure channel, and by taking into account energy constraints, we conclude the same for a pure-loss bosonic channel. The method for establishing the aforementioned entropy bound involves identifying an information measure having two key properties: 1) it does not increase under a one-way local operations and classical communication channel from the receiver to the sender and 2) a quantum channel from sender to receiver cannot increase the information measure by more than the maximum output entropy of the channel. This information measure can be understood as the sum of two terms, with one corresponding to classical correlation and the other to entanglement.