No Arabic abstract
Designing encoding and decoding circuits to reliably send messages over many uses of a noisy channel is a central problem in communication theory. When studying the optimal transmission rates achievable with asymptotically vanishing error it is usually assumed that these circuits can be implemented using noise-free gates. While this assumption is satisfied for classical machines in many scenarios, it is not expected to be satisfied in the near term future for quantum machines where decoherence leads to faults in the quantum gates. As a result, fundamental questions regarding the practical relevance of quantum channel coding remain open. By combining techniques from fault-tolerant quantum computation with techniques from quantum communication, we initiate the study of these questions. We introduce fault-tolera
We present a layered hybrid-system approach to quantum communication that involves the distribution of a topological cluster state throughout a quantum network. Photon loss and other errors are suppressed by optical multiplexing and entanglement purification. The scheme is scalable to large distances, achieving an end-to-end rate of 1 kHz with around 50 qubits per node. We suggest a potentially suitable implementation of an individual node composed of erbium spins (single atom or ensemble) coupled via flux qubits to a microwave resonator, allowing for deterministic local gates, stable quantum memories, and emission of photons in the telecom regime.
Extensive quantum error correction is necessary in order to perform a useful computation on a noisy quantum computer. Moreover, quantum error correction must be implemented based on imperfect parity check measurements that may return incorrect outcomes or inject additional faults into the qubits. To achieve fault-tolerant error correction, Shor proposed to repeat the sequence of parity check measurements until the same outcome is observed sufficiently many times. Then, one can use this information to perform error correction. A basic implementation of this fault tolerance strategy requires $Omega(r d^2)$ parity check measurements for a distance-d code defined by r parity checks. For some specific highly structured quantum codes, Bombin has shown that single-shot fault-tolerant quantum error correction is possible using only r measurements. In this work, we demonstrate that fault-tolerant quantum error correction can be achieved using $O(d log(d))$ measurements for any code with distance $d geq Omega(n^alpha)$ for some constant $alpha > 0$. Moreover, we prove the existence of a sub-single-shot fault-tolerant quantum error correction scheme using fewer than r measurements. In some cases, the number of parity check measurements required for fault-tolerant quantum error correction is exponentially smaller than the number of parity checks defining the code.
Quantum repeaters (QRs) provide a way of enabling long distance quantum communication by establishing entangled qubits between remote locations. We investigate a new approach to QRs in which quantum information can be faithfully transmitted via a noisy channel without the use of long distance teleportation, thus eliminating the need to establish remote entangled links. Our approach makes use of small encoding blocks to fault-tolerantly correct both operational and photon loss errors. We describe a way to optimize the resource requirement for these QRs with the aim of the generation of a secure key. Numerical calculations indicate that the number of quantum memory bits required for our scheme has favorable poly-logarithmic scaling with the distance across which the communication is desired.
We explain how to combine holonomic quantum computation (HQC) with fault tolerant quantum error correction. This establishes the scalability of HQC, putting it on equal footing with other models of computation, while retaining the inherent robustness the method derives from its geometric nature.