Do you want to publish a course? Click here

Interpretable Convolutional Filters with SincNet

294   0   0.0 ( 0 )
 Added by Mirco Ravanelli
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Deep learning is currently playing a crucial role toward higher levels of artificial intelligence. This paradigm allows neural networks to learn complex and abstract representations, that are progressively obtained by combining simpler ones. Nevertheless, the internal black-box representations automatically discovered by current neural architectures often suffer from a lack of interpretability, making of primary interest the study of explainable machine learning techniques. This paper summarizes our recent efforts to develop a more interpretable neural model for directly processing speech from the raw waveform. In particular, we propose SincNet, a novel Convolutional Neural Network (CNN) that encourages the first layer to discover more meaningful filters by exploiting parametrized sinc functions. In contrast to standard CNNs, which learn all the elements of each filter, only low and high cutoff frequencies of band-pass filters are directly learned from data. This inductive bias offers a very compact way to derive a customized filter-bank front-end, that only depends on some parameters with a clear physical meaning. Our experiments, conducted on both speaker and speech recognition, show that the proposed architecture converges faster, performs better, and is more interpretable than standard CNNs.



rate research

Read More

Deep neural networks can learn complex and abstract representations, that are progressively obtained by combining simpler ones. A recent trend in speech and speaker recognition consists in discovering these representations starting from raw audio samples directly. Differently from standard hand-crafted features such as MFCCs or FBANK, the raw waveform can potentially help neural networks discover better and more customized representations. The high-dimensional raw inputs, however, can make training significantly more challenging. This paper summarizes our recent efforts to develop a neural architecture that efficiently processes speech from audio waveforms. In particular, we propose SincNet, a novel Convolutional Neural Network (CNN) that encourages the first layer to discover meaningful filters by exploiting parametrized sinc functions. In contrast to standard CNNs, which learn all the elements of each filter, only low and high cutoff frequencies of band-pass filters are directly learned from data. This inductive bias offers a very compact way to derive a customized front-end, that only depends on some parameters with a clear physical meaning. Our experiments, conducted on both speaker and speech recognition, show that the proposed architecture converges faster, performs better, and is more computationally efficient than standard CNNs.
Speech recognition is a well developed research field so that the current state of the art systems are being used in many applications in the software industry, yet as by today, there still does not exist such robust system for the recognition of words and sentences from singing voice. This paper proposes a complete pipeline for this task which may commonly be referred as automatic lyrics transcription (ALT). We have trained convolutional time-delay neural networks with self-attention on monophonic karaoke recordings using a sequence classification objective for building the acoustic model. The dataset used in this study, DAMP - Sing! 300x30x2 [1] is filtered to have songs with only English lyrics. Different language models are tested including MaxEnt and Recurrent Neural Networks based methods which are trained on the lyrics of pop songs in English. An in-depth analysis of the self-attention mechanism is held while tuning its context width and the number of attention heads. Using the best settings, our system achieves notable improvement to the state-of-the-art in ALT and provides a new baseline for the task.
Deep learning is progressively gaining popularity as a viable alternative to i-vectors for speaker recognition. Promising results have been recently obtained with Convolutional Neural Networks (CNNs) when fed by raw speech samples directly. Rather than employing standard hand-crafted features, the latter CNNs learn low-level speech representations from waveforms, potentially allowing the network to better capture important narrow-band speaker characteristics such as pitch and formants. Proper design of the neural network is crucial to achieve this goal. This paper proposes a novel CNN architecture, called SincNet, that encourages the first convolutional layer to discover more meaningful filters. SincNet is based on parametrized sinc functions, which implement band-pass filters. In contrast to standard CNNs, that learn all elements of each filter, only low and high cutoff frequencies are directly learned from data with the proposed method. This offers a very compact and efficient way to derive a customized filter bank specifically tuned for the desired application. Our experiments, conducted on both speaker identification and speaker verification tasks, show that the proposed architecture converges faster and performs better than a standard CNN on raw waveforms.
In this paper, we report state-of-the-art results on LibriSpeech among end-to-end speech recognition models without any external training data. Our model, Jasper, uses only 1D convolutions, batch normalization, ReLU, dropout, and residual connections. To improve training, we further introduce a new layer-wise optimizer called NovoGrad. Through experiments, we demonstrate that the proposed deep architecture performs as well or better than more complex choices. Our deepest Jasper variant uses 54 convolutional layers. With this architecture, we achieve 2.95% WER using a beam-search decoder with an external neural language model and 3.86% WER with a greedy decoder on LibriSpeech test-clean. We also report competitive results on the Wall Street Journal and the Hub500 conversational evaluation datasets.
Probabilistic Latent Variable Models (LVMs) provide an alternative to self-supervised learning approaches for linguistic representation learning from speech. LVMs admit an intuitive probabilistic interpretation where the latent structure shapes the information extracted from the signal. Even though LVMs have recently seen a renewed interest due to the introduction of Variational Autoencoders (VAEs), their use for speech representation learning remains largely unexplored. In this work, we propose Convolutional Deep Markov Model (ConvDMM), a Gaussian state-space model with non-linear emission and transition functions modelled by deep neural networks. This unsupervised model is trained using black box variational inference. A deep convolutional neural network is used as an inference network for structured variational approximation. When trained on a large scale speech dataset (LibriSpeech), ConvDMM produces features that significantly outperform multiple self-supervised feature extracting methods on linear phone classification and recognition on the Wall Street Journal dataset. Furthermore, we found that ConvDMM complements self-supervised methods like Wav2Vec and PASE, improving on the results achieved with any of the methods alone. Lastly, we find that ConvDMM features enable learning better phone recognizers than any other features in an extreme low-resource regime with few labeled training examples.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا