No Arabic abstract
In the standard cosmological model, dark matter drives the structure formation and constructs potential wells within which galaxies may form. The baryon fraction in dark halos can reach the universal value (15.7%) in massive clusters and decreases rapidly as the mass of the system decreases. The formation of dwarf galaxies is sensitive both to baryonic processes and the properties of dark matter owing to the shallow potential wells in which they form. In dwarf galaxies in the Local Group, dark matter dominates the mass content even within their optical-light half-radii (r_e ~ 1 kpc). However, recently it has been argued that not all dwarf galaxies are dominated by dark matter. Here we report 19 dwarf galaxies that could consist mainly of baryons up to radii well beyond r_e, at which point they are expected to be dominated by dark matter. Of these, 14 are isolated dwarf galaxies, free from the influence of nearby bright galaxies and high dense environments. This result provides observational evidence that could challenge the formation theory of low-mass galaxies within the framework of standard cosmology. Further observations, in particular deep imaging and spatially-resolved kinematics, are needed to constrain the baryon fraction better in such galaxies.
We use cosmological hydrodynamical simulations of the APOSTLE project along with high-quality rotation curve observations to examine the fraction of baryons in {Lambda}CDM haloes that collect into galaxies. This galaxy formation efficiency correlates strongly and with little scatter with halo mass, dropping steadily towards dwarf galaxies. The baryonic mass of a galaxy may thus be used to place a lower limit on total halo mass and, consequently, on its asymptotic maximum circular velocity. A number of observed dwarfs seem to violate this constraint, having baryonic masses up to ten times higher than expected from their rotation speeds, or, alternatively, rotating at only half the speed expected for their mass. Taking the data at face value, either these systems have formed galaxies with extraordinary efficiency - highly unlikely given their shallow potential wells - or their dark matter content is much lower than expected from {Lambda}CDM haloes. This missing dark matter is reminiscent of the inner mass deficit of galaxies with slowly-rising rotation curves, but cannot be explained away by star formation-induced cores in the dark mass profile, since the anomalous deficit applies to regions larger than the luminous galaxies themselves. We argue that explaining the structure of these galaxies would require either substantial modification of the standard Lambda cold dark matter paradigm or else significant revision to the uncertainties in their inferred mass profiles, which should be much larger than reported. Systematic errors in inclination may provide a simple resolution to what would otherwise be a rather intractable problem for the current paradigm.
In the standard Lambda-CDM paradigm, dwarf galaxies are expected to be dark-matter-rich, as baryonic feedback is thought to quickly drive gas out of their shallow potential wells and quench star formation at early epochs. Recent observations of local dwarfs with extremely low dark matter content appear to contradict this picture, potentially bringing the validity of the standard model into question. We use NewHorizon, a high-resolution cosmological simulation, to demonstrate that sustained stripping of dark matter, in tidal interactions between a massive galaxy and a dwarf satellite, naturally produces dwarfs that are dark-matter-deficient, even though their initial dark matter fractions are normal. The process of dark matter stripping is responsible for the large scatter in the halo-to-stellar mass relation in the dwarf regime. The degree of stripping is driven by the closeness of the orbit of the dwarf around its massive companion and, in extreme cases, produces dwarfs with halo-to-stellar mass ratios as low as unity, consistent with the findings of recent observational studies. ~30 per cent of dwarfs show some deviation from normal dark matter fractions due to dark matter stripping, with 10 per cent showing high levels of dark matter deficiency (Mhalo/M*<10). Given their close orbits, a significant fraction of dark-matter-deficient dwarfs merge with their massive companions (e.g. ~70 per cent merge over timescales of ~3.5 Gyrs), with the dark-matter-deficient population being constantly replenished by new interactions between dwarfs and massive companions. The creation of these galaxies is, therefore, a natural by-product of galaxy evolution and their existence is not in tension with the standard paradigm.
Low mass galaxies are expected to be dark matter dominated even within their centrals. Recently two observations reported two dwarf galaxies in group environment with very little dark matter in their centrals. We explore the population and origins of dark-matter-deficient galaxies (DMDGs) in two state-of-the-art hydrodynamical simulations, the EAGLE and Illustris projects. For all satellite galaxies with $10^9<M_*<10^{10}$ M$_{odot}$ in groups with $M_{200}>10^{13}$ M$_{odot}$, we find that about $2.6%$ of them in the EAGLE, and $1.5%$ in the Illustris are DMDGs with dark matter fractions below $50%$ inside two times half-stellar-mass radii. We demonstrate that DMDGs are highly tidal disrupted galaxies; and because dark matter has higher binding energy than stars, mass loss of the dark matter is much more rapid than stars in DMDGs during tidal interactions. If DMDGs were confirmed in observations, they are expected in current galaxy formation models.
We present the results of a Keck-ESI spectroscopic study of six dwarf elliptical (dE) galaxies in the Perseus Cluster core, and confirm two dwarfs as cluster members for the first time. All six dEs follow the size-magnitude relation for dE/dSph galaxies. Central velocity dispersions are measured for three Perseus dwarfs in our sample, and all lie on the $sigma$-luminosity relation for early-type, pressure supported systems. We furthermore examine SA 0426-002, a unique dE in our sample with a bar-like morphology surrounded by low-surface brightness wings/lobes ($mu_{B} = 27$ mag arcsec$^{-2}$). Given its morphology, velocity dispersion ($sigma_{0} = 33.9 pm 6.1 $ km s$^{-1}$), velocity relative to the brightest cluster galaxy NGC 1275 (2711 km s$^{-1}$), size ($R_{e} =2.1 pm 0.10$ kpc), and Sersic index ($n= 1.2 pm 0.02$), we hypothesise the dwarf has morphologically transformed from a low mass disc to dE via harassment. The low-surface brightness lobes can be explained as a ring feature, with the bar formation triggered by tidal interactions via speed encounters with Perseus Cluster members. Alongside spiral structure found in dEs in Fornax and Virgo, SA 0426-002 provides crucial evidence that a fraction of bright dEs have a disc infall origin, and are not part of the primordial cluster population.
We study the effects of black hole dark matter on the dynamical evolution of stars in dwarf galaxies. We find that mass segregation leads to a depletion of stars in the center of dwarf galaxies and the appearance of a ring in the projected stellar surface density profile. Using Segue 1 as an example we show that current observations of the projected surface stellar density rule out at the 99.9% confidence level the possibility that more than 6% of the dark matter is composed of black holes with a mass of few tens of solar masses.