Do you want to publish a course? Click here

Weakly Supervised Estimation of Shadow Confidence Maps in Fetal Ultrasound Imaging

110   0   0.0 ( 0 )
 Added by Qingjie Meng
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Detecting acoustic shadows in ultrasound images is important in many clinical and engineering applications. Real-time feedback of acoustic shadows can guide sonographers to a standardized diagnostic viewing plane with minimal artifacts and can provide additional information for other automatic image analysis algorithms. However, automatically detecting shadow regions using learning-based algorithms is challenging because pixel-wise ground truth annotation of acoustic shadows is subjective and time consuming. In this paper we propose a weakly supervised method for automatic confidence estimation of acoustic shadow regions. Our method is able to generate a dense shadow-focused confidence map. In our method, a shadow-seg module is built to learn general shadow features for shadow segmentation, based on global image-level annotations as well as a small number of coarse pixel-wise shadow annotations. A transfer function is introduced to extend the obtained binary shadow segmentation to a reference confidence map. Additionally, a confidence estimation network is proposed to learn the mapping between input images and the reference confidence maps. This network is able to predict shadow confidence maps directly from input images during inference. We use evaluation metrics such as DICE, inter-class correlation and etc. to verify the effectiveness of our method. Our method is more consistent than human annotation, and outperforms the state-of-the-art quantitatively in shadow segmentation and qualitatively in confidence estimation of shadow regions. We further demonstrate the applicability of our method by integrating shadow confidence maps into tasks such as ultrasound image classification, multi-view image fusion and automated biometric measurements.



rate research

Read More

This paper addresses the task of detecting and localising fetal anatomical regions in 2D ultrasound images, where only image-level labels are present at training, i.e. without any localisation or segmentation information. We examine the use of convolutional neural network architectures coupled with soft proposal layers. The resulting network simultaneously performs anatomical region detection (classification) and localisation tasks. We generate a proposal map describing the attention of the network for a particular class. The network is trained on 85,500 2D fetal Ultrasound images and their associated labels. Labels correspond to six anatomical regions: head, spine, thorax, abdomen, limbs, and placenta. Detection achieves an average accuracy of 90% on individual regions, and show that the proposal maps correlate well with relevant anatomical structures. This work presents itself as a powerful and essential step towards subsequent tasks such as fetal position and pose estimation, organ-specific segmentation, or image-guided navigation. Code and additional material is available at https://ntoussaint.github.io/fetalnav
The 3D ultrasound (US) entrance inspires a multitude of automated prenatal examinations. However, studies about the structuralized description of the whole fetus in 3D US are still rare. In this paper, we propose to estimate the 3D pose of fetus in US volumes to facilitate its quantitative analyses in global and local scales. Given the great challenges in 3D US, including the high volume dimension, poor image quality, symmetric ambiguity in anatomical structures and large variations of fetal pose, our contribution is three-fold. (i) This is the first work about 3D pose estimation of fetus in the literature. We aim to extract the skeleton of whole fetus and assign different segments/joints with correct torso/limb labels. (ii) We propose a self-supervised learning (SSL) framework to finetune the deep network to form visually plausible pose predictions. Specifically, we leverage the landmark-based registration to effectively encode case-adaptive anatomical priors and generate evolving label proxy for supervision. (iii) To enable our 3D network perceive better contextual cues with higher resolution input under limited computing resource, we further adopt the gradient check-pointing (GCP) strategy to save GPU memory and improve the prediction. Extensively validated on a large 3D US dataset, our method tackles varying fetal poses and achieves promising results. 3D pose estimation of fetus has potentials in serving as a map to provide navigation for many advanced studies.
Fetal brain magnetic resonance imaging (MRI) offers exquisite images of the developing brain but is not suitable for anomaly screening. For this ultrasound (US) is employed. While expert sonographers are adept at reading US images, MR images are much easier for non-experts to interpret. Hence in this paper we seek to produce images with MRI-like appearance directly from clinical US images. Our own clinical motivation is to seek a way to communicate US findings to patients or clinical professionals unfamiliar with US, but in medical image analysis such a capability is potentially useful, for instance, for US-MRI registration or fusion. Our model is self-supervised and end-to-end trainable. Specifically, based on an assumption that the US and MRI data share a similar anatomical latent space, we first utilise an extractor to determine shared latent features, which are then used for data synthesis. Since paired data was unavailable for our study (and rare in practice), we propose to enforce the distributions to be similar instead of employing pixel-wise constraints, by adversarial learning in both the image domain and latent space. Furthermore, we propose an adversarial structural constraint to regularise the anatomical structures between the two modalities during the synthesis. A cross-modal attention scheme is proposed to leverage non-local spatial correlations. The feasibility of the approach to produce realistic looking MR images is demonstrated quantitatively and with a qualitative evaluation compared to real fetal MR images.
Accurate and efficient catheter segmentation in 3D ultrasound (US) is essential for cardiac intervention. Currently, the state-of-the-art segmentation algorithms are based on convolutional neural networks (CNNs), which achieved remarkable performances in a standard Cartesian volumetric data. Nevertheless, these approaches suffer the challenges of low efficiency and GPU unfriendly image size. Therefore, such difficulties and expensive hardware requirements become a bottleneck to build accurate and efficient segmentation models for real clinical application. In this paper, we propose a novel Frustum ultrasound based catheter segmentation method. Specifically, Frustum ultrasound is a polar coordinate based image, which includes same information of standard Cartesian image but has much smaller size, which overcomes the bottleneck of efficiency than conventional Cartesian images. Nevertheless, the irregular and deformed Frustum images lead to more efforts for accurate voxel-level annotation. To address this limitation, a weakly supervised learning framework is proposed, which only needs 3D bounding box annotations overlaying the region-of-interest to training the CNNs. Although the bounding box annotation includes noise and inaccurate annotation to mislead to model, it is addressed by the proposed pseudo label generated scheme. The labels of training voxels are generated by incorporating class activation maps with line filtering, which is iteratively updated during the training. Our experimental results show the proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume. More crucially, the Frustum image segmentation provides a much faster and cheaper solution for segmentation in 3D US image, which meet the demands of clinical applications.
Following recent technological advances there is a growing interest in building non-intrusive methods that help us communicate with computing devices. In this regard, accurate information from eye is a promising input medium between a user and computing devices. In this paper we propose a method that captures the degree of eye closeness. Although many methods exist for detection of eyelid openness, they are inherently unable to satisfactorily perform in real world applications. Detailed eye state estimation is more important, in extracting meaningful information, than estimating whether eyes are open or closed. However, learning reliable eye state estimator requires accurate annotations which is cost prohibitive. In this work, we leverage synthetic face images which can be generated via computer graphics rendering techniques and automatically annotated with different levels of eye openness. These synthesized training data images, however, have a domain shift from real-world data. To alleviate this issue, we propose a weakly-supervised method which utilizes the accurate annotation from the synthetic data set, to learn accurate degree of eye openness, and the weakly labeled (open or closed) real world eye data set to control the domain shift. We introduce a data set of 1.3M synthetic face images with detail eye openness and eye gaze information, and 21k real-world images with open/closed annotation. The dataset will be released online upon acceptance. Extensive experiments validate the effectiveness of the proposed approach.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا