No Arabic abstract
Blind image deconvolution is the problem of recovering the latent image from the only observed blurry image when the blur kernel is unknown. In this paper, we propose an edge-based blur kernel estimation method for blind motion deconvolution. In our previous work, we incorporate both sparse representation and self-similarity of image patches as priors into our blind deconvolution model to regularize the recovery of the latent image. Since almost any natural image has properties of sparsity and multi-scale self-similarity, we construct a sparsity regularizer and a cross-scale non-local regularizer based on our patch priors. It has been observed that our regularizers often favor sharp images over blurry ones only for image patches of the salient edges and thus we define an edge mask to locate salient edges that we want to apply our regularizers. Experimental results on both simulated and real blurry images demonstrate that our method outperforms existing state-of-the-art blind deblurring methods even for handling of very large blurs, thanks to the use of the edge mask.
Independent Component Analysis (ICA) is an effective unsupervised tool to learn statistically independent representation. However, ICA is not only sensitive to whitening but also difficult to learn an over-complete basis. Consequently, ICA with soft Reconstruction cost(RICA) was presented to learn sparse representations with over-complete basis even on unwhitened data. Whereas RICA is infeasible to represent the data with nonlinear structure due to its intrinsic linearity. In addition, RICA is essentially an unsupervised method and can not utilize the class information. In this paper, we propose a kernel ICA model with reconstruction constraint (kRICA) to capture the nonlinear features. To bring in the class information, we further extend the unsupervised kRICA to a supervised one by introducing a discrimination constraint, namely d-kRICA. This constraint leads to learn a structured basis consisted of basis vectors from different basis subsets corresponding to different class labels. Then each subset will sparsely represent well for its own class but not for the others. Furthermore, data samples belonging to the same class will have similar representations, and thereby the learned sparse representations can take more discriminative power. Experimental results validate the effectiveness of kRICA and d-kRICA for image classification.
By considering the spatial correspondence, dense self-supervised representation learning has achieved superior performance on various dense prediction tasks. However, the pixel-level correspondence tends to be noisy because of many similar misleading pixels, e.g., backgrounds. To address this issue, in this paper, we propose to explore textbf{set} textbf{sim}ilarity (SetSim) for dense self-supervised representation learning. We generalize pixel-wise similarity learning to set-wise one to improve the robustness because sets contain more semantic and structure information. Specifically, by resorting to attentional features of views, we establish corresponding sets, thus filtering out noisy backgrounds that may cause incorrect correspondences. Meanwhile, these attentional features can keep the coherence of the same image across different views to alleviate semantic inconsistency. We further search the cross-view nearest neighbours of sets and employ the structured neighbourhood information to enhance the robustness. Empirical evaluations demonstrate that SetSim is superior to state-of-the-art methods on object detection, keypoint detection, instance segmentation, and semantic segmentation.
Tracking of multiple objects is an important application in AI City geared towards solving salient problems related to safety and congestion in an urban environment. Frequent occlusion in traffic surveillance has been a major problem in this research field. In this challenge, we propose a model-based vehicle localization method, which builds a kernel at each patch of the 3D deformable vehicle model and associates them with constraints in 3D space. The proposed method utilizes shape fitness evaluation besides color information to track vehicle objects robustly and efficiently. To build 3D car models in a fully unsupervised manner, we also implement evolutionary camera self-calibration from tracking of walking humans to automatically compute camera parameters. Additionally, the segmented foreground masks which are crucial to 3D modeling and camera self-calibration are adaptively refined by multiple-kernel feedback from tracking. For object detection/classification, the state-of-the-art single shot multibox detector (SSD) is adopted to train and test on the NVIDIA AI City Dataset. To improve the accuracy on categories with only few objects, like bus, bicycle and motorcycle, we also employ the pretrained model from YOLO9000 with multi-scale testing. We combine the results from SSD and YOLO9000 based on ensemble learning. Experiments show that our proposed tracking system outperforms both state-of-the-art of tracking by segmentation and tracking by detection.
Blur detection aims at segmenting the blurred areas of a given image. Recent deep learning-based methods approach this problem by learning an end-to-end mapping between the blurred input and a binary mask representing the localization of its blurred areas. Nevertheless, the effectiveness of such deep models is limited due to the scarcity of datasets annotated in terms of blur segmentation, as blur annotation is labour intensive. In this work, we bypass the need for such annotated datasets for end-to-end learning, and instead rely on object proposals and a model for blur generation in order to produce a dataset of synthetically blurred images. This allows us to perform self-supervised learning over the generated image and ground truth blur mask pairs using CNNs, defining a framework that can be employed in purely self-supervised, weakly supervised or semi-supervised configurations. Interestingly, experimental results of such setups over the largest blur segmentation datasets available show that this approach achieves state of the art results in blur segmentation, even without ever observing any real blurred image.
Sparse representation has been widely used in data compression, signal and image denoising, dimensionality reduction and computer vision. While overcomplete dictionaries are required for sparse representation of multidimensional data, orthogonal bases represent one-dimensional data well. In this paper, we propose a data-driven sparse representation using orthonormal bases under the lossless compression constraint. We show that imposing such constraint under the Minimum Description Length (MDL) principle leads to a unique and optimal sparse representation for one-dimensional data, which results in discriminative features useful for data discovery.