No Arabic abstract
Sparse representation has been widely used in data compression, signal and image denoising, dimensionality reduction and computer vision. While overcomplete dictionaries are required for sparse representation of multidimensional data, orthogonal bases represent one-dimensional data well. In this paper, we propose a data-driven sparse representation using orthonormal bases under the lossless compression constraint. We show that imposing such constraint under the Minimum Description Length (MDL) principle leads to a unique and optimal sparse representation for one-dimensional data, which results in discriminative features useful for data discovery.
Most data is automatically collected and only ever seen by algorithms. Yet, data compressors preserve perceptual fidelity rather than just the information needed by algorithms performing downstream tasks. In this paper, we characterize the bit-rate required to ensure high performance on all predictive tasks that are invariant under a set of transformations, such as data augmentations. Based on our theory, we design unsupervised objectives for training neural compressors. Using these objectives, we train a generic image compressor that achieves substantial rate savings (more than $1000times$ on ImageNet) compared to JPEG on 8 datasets, without decreasing downstream classification performance.
Sequential data is being generated at an unprecedented pace in various forms, including text and genomic data. This creates the need for efficient compression mechanisms to enable better storage, transmission and processing of such data. To solve this problem, many of the existing compressors attempt to learn models for the data and perform prediction-based compression. Since neural networks are known as universal function approximators with the capability to learn arbitrarily complex mappings, and in practice show excellent performance in prediction tasks, we explore and devise methods to compress sequential data using neural network predictors. We combine recurrent neural network predictors with an arithmetic coder and losslessly compress a variety of synthetic, text and genomic datasets. The proposed compressor outperforms Gzip on the real datasets and achieves near-optimal compression for the synthetic datasets. The results also help understand why and where neural networks are good alternatives for traditional finite context models
We leverage the powerful lossy image compression algorithm BPG to build a lossless image compression system. Specifically, the original image is first decomposed into the lossy reconstruction obtained after compressing it with BPG and the corresponding residual. We then model the distribution of the residual with a convolutional neural network-based probabilistic model that is conditioned on the BPG reconstruction, and combine it with entropy coding to losslessly encode the residual. Finally, the image is stored using the concatenation of the bitstreams produced by BPG and the learned residual coder. The resulting compression system achieves state-of-the-art performance in learned lossless full-resolution image compression, outperforming previous learned approaches as well as PNG, WebP, and JPEG2000.
We propose a scheme for multi-layer representation of images. The problem is first treated from an information-theoretic viewpoint where we analyze the behavior of different sources of information under a multi-layer data compression framework and compare it with a single-stage (shallow) structure. We then consider the image data as the source of information and link the proposed representation scheme to the problem of multi-layer dictionary learning for visual data. For the current work we focus on the problem of image compression for a special class of images where we report a considerable performance boost in terms of PSNR at high compression ratios in comparison with the JPEG2000 codec.
High demands for industrial networks lead to increasingly large sensor networks. However, the complexity of networks and demands for accurate data require better stability and communication quality. Conventional clustering methods for ad-hoc networks are based on topology and connectivity, leading to unstable clustering results and low communication quality. In this paper, we focus on two situations: time-evolving networks, and multi-channel ad-hoc networks. We model ad-hoc networks as graphs and introduce community detection methods to both situations. Particularly, in time-evolving networks, our method utilizes the results of community detection to ensure stability. By using similarity or human-in-the-loop measures, we construct a new weighted graph for final clustering. In multi-channel networks, we perform allocations from the results of multiplex community detection. Experiments on real-world datasets show that our method outperforms baselines in both stability and quality.