Do you want to publish a course? Click here

Active Galaxy Science in the LSST Deep-Drilling Fields: Footprints, Cadence Requirements, and Total-Depth Requirements

75   0   0.0 ( 0 )
 Added by Guang Yang
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

This white paper specifies the footprints, cadence requirements, and total-depth requirements needed to allow the most-successful AGN studies in the four currently selected LSST Deep-Drilling Fields (DDFs): ELAIS-S1, XMM-LSS, CDF-S, and COSMOS. The information provided on cadence and total-depth requirements will also likely be applicable to enabling effective AGN science in any additional DDFs that are chosen.



rate research

Read More

To extend LSSTs coverage of the transient and variable sky down to minute timescales, we propose that observations of the Deep Drilling Fields are acquired in sequences of continuous exposures each lasting 2--4 hours. This will allow LSST to resolve rapid stellar variability such as short-period pulsations, exoplanet transits, ultracompact binary systems, and flare morphologies, while still achieving the desired co-added depths for the selected fields. The greater number of observations of each Deep Drilling Field pushes these mini-surveys deep in terms of both sensitivity to low-amplitude variability and co-added depth. Saving the individual 15-second exposures will yield an effective Nyquist limit of $approx0.031$ Hz (32 seconds). Resolved short-period variability of targets in these fields will aid the interpretation of sparse observations of a greater number of variables in the main survey. If this cadence strategy conflicts with the science goals of individual Deep Drilling Fields, at least a subset of the additional observations of each field should be obtained continuously. This strategy should also be considered for the proposed Galactic Plane mini survey, which will observe a greater number of stellar variables and transients.
The Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC) will use five cosmological probes: galaxy clusters, large scale structure, supernovae, strong lensing, and weak lensing. This Science Requirements Document (SRD) quantifies the expected dark energy constraining power of these probes individually and together, with conservative assumptions about analysis methodology and follow-up observational resources based on our current understanding and the expected evolution within the field in the coming years. We then define requirements on analysis pipelines that will enable us to achieve our goal of carrying out a dark energy analysis consistent with the Dark Energy Task Force definition of a Stage IV dark energy experiment. This is achieved through a forecasting process that incorporates the flowdown to detailed requirements on multiple sources of systematic uncertainty. Futur
We review the measurements of dark energy enabled by observations of the Deep Drilling Fields and the optimization of survey design for cosmological measurements. This white paper is the result of efforts by the LSST DESC Observing Strategy Task Force (OSTF), which represents the entire collaboration, and aims to make recommendations on observing strategy for the DDFs that will benefit all cosmological analyses with LSST. It is accompanied by the DESC-WFD white paper (Lochner et al.). We argue for altering the nominal deep drilling plan to have $>6$ month seasons, interweaving $gri$ and $zy$ observations every 3 days with 2, 4, 8, 25, 4 visits in $grizy$, respectively. These recommendations are guided by metrics optimizing constraints on dark energy and mitigation of systematic uncertainties, including specific requirements on total number of visits after Y1 and Y10 for photometric redshifts (photo-$z$) and weak lensing systematics. We specify the precise locations for the previously-chosen LSST deep fields (ELAIS-S1, XMM-LSS, CDF-S, and COSMOS) and recommend Akari Deep Field South as the planned fifth deep field in order to synergize with Euclid and WFIRST. Our recommended DDF strategy uses $6.2%$ of the LSST survey time. We briefly discuss synergy with white papers from other collaborations, as well as additional mini-surveys and Target-of-Opportunity programs that lead to better measurements of dark energy.
The science case and associated science requirements for a next-generation Very Large Array (ngVLA) are described, highlighting the five key science goals developed out of a community-driven vision of the highest scientific priorities in the next decade. Building on the superb cm observing conditions and existing infrastructure of the VLA site in the U.S. Southwest, the ngVLA is envisaged to be an interferometric array with more than 10 times the sensitivity and spatial resolution of the current VLA and ALMA, operating at frequencies spanning $sim1.2 - 116$,GHz with extended baselines reaching across North America. The ngVLA will be optimized for observations at wavelengths between the exquisite performance of ALMA at submm wavelengths, and the future SKA-1 at decimeter to meter wavelengths, thus lending itself to be highly complementary with these facilities. The ngVLA will be the only facility in the world that can tackle a broad range of outstanding scientific questions in modern astronomy by simultaneously delivering the capability to: (1) unveil the formation of Solar System analogues; (2) probe the initial conditions for planetary systems and life with astrochemistry; (3) characterize the assembly, structure, and evolution of galaxies from the first billion years to the present; (4) use pulsars in the Galactic center as fundamental tests of gravity; and (5) understand the formation and evolution of stellar and supermassive blackholes in the era of multi-messenger astronomy.
145 - C. J. Evans , M. Puech , B. Barbuy 2014
Over the past 18 months we have revisited the science requirements for a multi-object spectrograph (MOS) for the European Extremely Large Telescope (E-ELT). These efforts span the full range of E-ELT science and include input from a broad cross-section of astronomers across the ESO partner countries. In this contribution we summarise the key cases relating to studies of high-redshift galaxies, galaxy evolution, and stellar populations, with a more expansive presentation of a new case relating to detection of exoplanets in stellar clusters. A general requirement is the need for two observational modes to best exploit the large (>40 sq. arcmin) patrol field of the E-ELT. The first mode (high multiplex) requires integrated-light (or coarsely resolved) optical/near-IR spectroscopy of >100 objects simultaneously. The second (high definition), enabled by wide-field adaptive optics, requires spatially-resolved, near-IR of >10 objects/sub-fields. Within the context of the conceptual study for an ELT-MOS called MOSAIC, we summarise the top-level requirements from each case and introduce the next steps in the design process.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا