No Arabic abstract
Over the past 18 months we have revisited the science requirements for a multi-object spectrograph (MOS) for the European Extremely Large Telescope (E-ELT). These efforts span the full range of E-ELT science and include input from a broad cross-section of astronomers across the ESO partner countries. In this contribution we summarise the key cases relating to studies of high-redshift galaxies, galaxy evolution, and stellar populations, with a more expansive presentation of a new case relating to detection of exoplanets in stellar clusters. A general requirement is the need for two observational modes to best exploit the large (>40 sq. arcmin) patrol field of the E-ELT. The first mode (high multiplex) requires integrated-light (or coarsely resolved) optical/near-IR spectroscopy of >100 objects simultaneously. The second (high definition), enabled by wide-field adaptive optics, requires spatially-resolved, near-IR of >10 objects/sub-fields. Within the context of the conceptual study for an ELT-MOS called MOSAIC, we summarise the top-level requirements from each case and introduce the next steps in the design process.
This White Paper presents the scientific motivations for a multi-object spectrograph (MOS) on the European Extremely Large Telescope (E-ELT). The MOS case draws on all fields of contemporary astronomy, from extra-solar planets, to the study of the halo of the Milky Way and its satellites, and from resolved stellar populations in nearby galaxies out to observations of the earliest first-light structures in the partially-reionised Universe. The material presented here results from thorough discussions within the community over the past four years, building on the past competitive studies to agree a common strategy toward realising a MOS capability on the E-ELT. The cases have been distilled to a set of common requirements which will be used to define the MOSAIC instrument, entailing two observational modes (high multiplex and high definition). When combined with the unprecedented sensitivity of the E-ELT, MOSAIC will be the worlds leading MOS facility. In analysing the requirements we also identify a high-multiplex MOS for the longer-term plans for the E-ELT, with an even greater multiplex (>1000 targets) to enable studies of large-scale structures in the high-redshift Universe. Following the green light for the construction of the E-ELT the MOS community, structured through the MOSAIC consortium, is eager to realise a MOS on the E-ELT as soon as possible. We argue that several of the most compelling cases for ELT science, in highly competitive areas of modern astronomy, demand such a capability. For example, MOS observations in the early stages of E-ELT operations will be essential for follow-up of sources identified by the James Webb Space Telescope (JWST). In particular, multi-object adaptive optics and accurate sky subtraction with fibres have both recently been demonstrated on sky, making fast-track development of MOSAIC feasible.
Building on the comprehensive White Paper on the scientific case for multi-object spectroscopy on the European ELT, we present the top-level instrument requirements that are being used in the Phase A design study of the MOSAIC concept. The assembled cases span the full range of E-ELT science and generally require either high multiplex or high definition observations to best exploit the excellent sensitivity and spatial performance of the telescope. We highlight some of the science studies that are now being used in trade-off studies to inform the capabilities of MOSAIC and its technical design.
We present the consolidated scientific case for multi-object spectroscopy with the MOSAIC concept on the European ELT. The cases span the full range of ELT science and require either high multiplex or high definition observations to best exploit the excellent sensitivity and wide field-of-view of the telescope. Following scientific prioritisation by the Science Team during the recent Phase A study of the MOSAIC concept, we highlight four key surveys designed for the instrument using detailed simulations of its scientific performance. We discuss future ways to optimise the conceptual design of MOSAIC in Phase B, and illustrate its competitiveness and unique capabilities by comparison with other facilities that will be available in the 2020s.
We present a discussion of the design issues and trade-offs that have been considered in putting together a new concept for MOSAIC, the multi-object spectrograph for the E-ELT. MOSAIC aims to address the combined science cases for E-ELT MOS that arose from the earlier studies of the multi-object and multi-adaptive optics instruments. MOSAIC combines the advantages of a highly-multiplexed instrument targeting single-point objects with one which has a more modest multiplex but can spatially resolve a source with high resolution (IFU). These will span across two wavebands: visible and near-infrared.
Wide-field multi-object spectroscopy is a high priority for European astronomy over the next decade. Most 8-10m telescopes have a small field of view, making 4-m class telescopes a particularly attractive option for wide-field instruments. We present a science case and design drivers for a wide-field multi-object spectrograph (MOS) with integral field units for the 4.2-m William Herschel Telescope (WHT) on La Palma. The instrument intends to take advantage of a future prime-focus corrector and atmospheric-dispersion corrector that will deliver a field of view 2 deg in diameter, with good throughput from 370 to 1,000 nm. The science programs cluster into three groups needing three different resolving powers R: (1) high-precision radial-velocities for Gaia-related Milky Way dynamics, cosmological redshift surveys, and galaxy evolution studies (R = 5,000), (2) galaxy disk velocity dispersions (R = 10,000) and (3) high-precision stellar element abundances for Milky Way archaeology (R = 20,000). The multiplex requirements of the different science cases range from a few hundred to a few thousand, and a range of fibre-positioner technologies are considered. Several options for the spectrograph are discussed, building in part on published design studies for E-ELT spectrographs. Indeed, a WHT MOS will not only efficiently deliver data for exploitation of important imaging surveys planned for the coming decade, but will also serve as a test-bed to optimize the design of MOS instruments for the future E-ELT.