No Arabic abstract
We review the measurements of dark energy enabled by observations of the Deep Drilling Fields and the optimization of survey design for cosmological measurements. This white paper is the result of efforts by the LSST DESC Observing Strategy Task Force (OSTF), which represents the entire collaboration, and aims to make recommendations on observing strategy for the DDFs that will benefit all cosmological analyses with LSST. It is accompanied by the DESC-WFD white paper (Lochner et al.). We argue for altering the nominal deep drilling plan to have $>6$ month seasons, interweaving $gri$ and $zy$ observations every 3 days with 2, 4, 8, 25, 4 visits in $grizy$, respectively. These recommendations are guided by metrics optimizing constraints on dark energy and mitigation of systematic uncertainties, including specific requirements on total number of visits after Y1 and Y10 for photometric redshifts (photo-$z$) and weak lensing systematics. We specify the precise locations for the previously-chosen LSST deep fields (ELAIS-S1, XMM-LSS, CDF-S, and COSMOS) and recommend Akari Deep Field South as the planned fifth deep field in order to synergize with Euclid and WFIRST. Our recommended DDF strategy uses $6.2%$ of the LSST survey time. We briefly discuss synergy with white papers from other collaborations, as well as additional mini-surveys and Target-of-Opportunity programs that lead to better measurements of dark energy.
Cosmology is one of the four science pillars of LSST, which promises to be transformative for our understanding of dark energy and dark matter. The LSST Dark Energy Science Collaboration (DESC) has been tasked with deriving constraints on cosmological parameters from LSST data. Each of the cosmological probes for LSST is heavily impacted by the choice of observing strategy. This white paper is written by the LSST DESC Observing Strategy Task Force (OSTF), which represents the entire collaboration, and aims to make recommendations on observing strategy that will benefit all cosmological analyses with LSST. It is accompanied by the DESC DDF (Deep Drilling Fields) white paper (Scolnic et al.). We use a variety of metrics to understand the effects of the observing strategy on measurements of weak lensing, large-scale structure, clusters, photometric redshifts, supernovae, strong lensing and kilonovae. In order to reduce systematic uncertainties, we conclude that the current baseline observing strategy needs to be significantly modified to result in the best possible cosmological constraints. We provide some key recommendations: moving the WFD (Wide-Fast-Deep) footprint to avoid regions of high extinction, taking visit pairs in different filters, changing the 2x15s snaps to a single exposure to improve efficiency, focusing on strategies that reduce long gaps (>15 days) between observations, and prioritizing spatial uniformity at several intervals during the 10-year survey.
The Large Synoptic Survey Telescope (LSST) Dark Energy Science Collaboration (DESC) will use five cosmological probes: galaxy clusters, large scale structure, supernovae, strong lensing, and weak lensing. This Science Requirements Document (SRD) quantifies the expected dark energy constraining power of these probes individually and together, with conservative assumptions about analysis methodology and follow-up observational resources based on our current understanding and the expected evolution within the field in the coming years. We then define requirements on analysis pipelines that will enable us to achieve our goal of carrying out a dark energy analysis consistent with the Dark Energy Task Force definition of a Stage IV dark energy experiment. This is achieved through a forecasting process that incorporates the flowdown to detailed requirements on multiple sources of systematic uncertainty. Futur
The Large Synoptic Survey Telescope is designed to provide an unprecedented optical imaging dataset that will support investigations of our Solar System, Galaxy and Universe, across half the sky and over ten years of repeated observation. However, exactly how the LSST observations will be taken (the observing strategy or cadence) is not yet finalized. In this dynamically-evolving community white paper, we explore how the detailed performance of the anticipated science investigations is expected to depend on small changes to the LSST observing strategy. Using realistic simulations of the LSST schedule and observation properties, we design and compute diagnostic metrics and Figures of Merit that provide quantitative evaluations of different observing strategies, analyzing their impact on a wide range of proposed science projects. This is work in progress: we are using this white paper to communicate to each other the relative merits of the observing strategy choices that could be made, in an effort to maximize the scientific value of the survey. The investigation of some science cases leads to suggestions for new strategies that could be simulated and potentially adopted. Notably, we find motivation for exploring departures from a spatially uniform annual tiling of the sky: focusing instead on different parts of the survey area in different years in a rolling cadence is likely to have significant benefits for a number of time domain and moving object astronomy projects. The communal assembly of a suite of quantified and homogeneously coded metrics is the vital first step towards an automated, systematic, science-based assessment of any given cadence simulation, that will enable the scheduling of the LSST to be as well-informed as possible.
The Wide-Field Infrared Survey Telescope (WFIRST) is expected to launch in the mid-2020s. With its wide-field near-infrared (NIR) camera, it will survey the sky to unprecedented detail. As part of normal operations and as the result of multiple expected dedicated surveys, WFIRST will produce several relatively wide-field (tens of square degrees) deep (limiting magnitude of 28 or fainter) fields. In particular, a planned supernova survey is expected to image 3 deep fields in the LSST footprint roughly every 5 days over 2 years. Stacking all data, this survey will produce, over all WFIRST supernova fields in the LSST footprint, ~12-25 deg^2 and ~5-15 deg^2 regions to depths of ~28 mag and ~29 mag, respectively. We suggest LSST undertake mini-surveys that will match the WFIRST cadence and simultaneously observe the supernova survey fields during the 2-year WFIRST supernova survey, achieving a stacked depth similar to that of the WFIRST data. We also suggest additional observations of these same regions throughout the LSST survey to get deep images earlier, have long-term monitoring in the fields, and produce deeper images overall. These fields will provide a legacy for cosmology, extragalactic, and transient/variable science.
To extend LSSTs coverage of the transient and variable sky down to minute timescales, we propose that observations of the Deep Drilling Fields are acquired in sequences of continuous exposures each lasting 2--4 hours. This will allow LSST to resolve rapid stellar variability such as short-period pulsations, exoplanet transits, ultracompact binary systems, and flare morphologies, while still achieving the desired co-added depths for the selected fields. The greater number of observations of each Deep Drilling Field pushes these mini-surveys deep in terms of both sensitivity to low-amplitude variability and co-added depth. Saving the individual 15-second exposures will yield an effective Nyquist limit of $approx0.031$ Hz (32 seconds). Resolved short-period variability of targets in these fields will aid the interpretation of sparse observations of a greater number of variables in the main survey. If this cadence strategy conflicts with the science goals of individual Deep Drilling Fields, at least a subset of the additional observations of each field should be obtained continuously. This strategy should also be considered for the proposed Galactic Plane mini survey, which will observe a greater number of stellar variables and transients.