Do you want to publish a course? Click here

HAL QCD method and Nucleon-Omega interaction with physical quark masses

119   0   0.0 ( 0 )
 Added by Takumi Iritani
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

In lattice QCD, both direct method and HAL QCD method are used to investigate the two-baryon systems. We show that due to the contamination of the scattering excited states, it is challenging to measure the eigenenergy from the temporal correlation in the direct method, while the HAL QCD method can extract the information of the interaction from both scattering states and ground state by using the spatial correlation. We examine the systematic uncertainty of the derivative expansion in the HAL QCD method, which is found to be well under control at the low energies. By using the time-dependent HAL QCD method, we study the nucleon($N$)-Omega($Omega$) system in the $^5$S$_2$ channel with almost physical quark masses at $m_pi simeq 146$ MeV. We find the interaction is attractive at all distances, which produces a quasi-bound state with the binding energy 1.54(0.30)($^{+0.04}_{-0.10}$) MeV. We also consider the extra Coulomb interaction in the $pOmega^{-}$($^5$S$_2$) system, whose binding energy becomes 2.46(0.34)($^{+0.04}_{-0.01}$) MeV. $NOmega$($^5$S$_2$) dibaryon could be searched through two-particle correlations in the heavy ion collision experiments.



rate research

Read More

We present results for several light hadronic quantities ($f_pi$, $f_K$, $B_K$, $m_{ud}$, $m_s$, $t_0^{1/2}$, $w_0$) obtained from simulations of 2+1 flavor domain wall lattice QCD with large physical volumes and nearly-physical pion masses at two lattice spacings. We perform a short, O(3)%, extrapolation in pion mass to the physical values by combining our new data in a simultaneous chiral/continuum `global fit with a number of other ensembles with heavier pion masses. We use the physical values of $m_pi$, $m_K$ and $m_Omega$ to determine the two quark masses and the scale - all other quantities are outputs from our simulations. We obtain results with sub-percent statistical errors and negligible chiral and finite-volume systematics for these light hadronic quantities, including: $f_pi$ = 130.2(9) MeV; $f_K$ = 155.5(8) MeV; the average up/down quark mass and strange quark mass in the $bar {rm MS}$ scheme at 3 GeV, 2.997(49) and 81.64(1.17) MeV respectively; and the neutral kaon mixing parameter, $B_K$, in the RGI scheme, 0.750(15) and the $bar{rm MS}$ scheme at 3 GeV, 0.530(11).
398 - R.A. Soltz , C. DeTar , F. Karsch 2015
Over the past few years new physics methods and algorithms as well as the latest supercomputers have enabled the study of the QCD thermodynamic phase transition using lattice gauge theory numerical simulations with unprecedented control over systematic errors. This is largely a consequence of the ability to perform continuum extrapolations with physical quark masses. Here we review recent progress in lattice QCD thermodynamics, focussing mainly on results that benefit from the use of physical quark masses: the crossover temperature, the equation of state, and fluctuations of the quark number susceptibilities. In addition, we place a special emphasis on calculations that are directly relevant to the study of relativistic heavy ion collisions at RHIC and the LHC.
We present the results of the nucleon and $Omega$ baryon masses using staggered action for both valence and sea quarks. Three ensembles with the physical pion mass at approximate lattice spacings of $0.15$, $0.12$, and $0.088$fm are employed to extrapolate the masses to continuum and we obtain $M_N = 964(16)$ MeV and $M_Omega = 1678(9)$. Both statistical and systematic uncertainties are included in the nucleon mass, whereas only the statistical uncertainty is accounted for in the $Omega$ baryon mass.
117 - Sinya Aoki , Takumi Doi 2020
In this article, we review the HAL QCD method to investigate baryon-baryon interactions such as nuclear forces in lattice QCD. We first explain our strategy in detail to investigate baryon-baryon interactions by defining potentials in field theories such as QCD. We introduce the Nambu-Bethe-Salpeter (NBS) wave functions in QCD for two baryons below the inelastic threshold. We then define the potential from NBS wave functions in terms of the derivative expansion, which is shown to reproduce the scattering phase shifts correctly below the inelastic threshold. Using this definition, we formulate a method to extract the potential in lattice QCD. Secondly, we discuss pros and cons of the HAL QCD method, by comparing it with the conventional method, where one directly extracts the scattering phase shifts from the finite volume energies through the Luschers formula. We give several theoretical and numerical evidences that the conventional method combined with the naive plateau fitting for the finite volume energies in the literature so far fails to work on baryon-baryon interactions due to contaminations of elastic excited states. On the other hand, we show that such a serious problem can be avoided in the HAL QCD method by defining the potential in an energy-independent way. We also discuss systematics of the HAL QCD method, in particular errors associated with a truncation of the derivative expansion. Thirdly, we present several results obtained from the HAL QCD method, which include (central) nuclear force, tensor force, spin-orbital force, and three nucleon force. We finally show the latest results calculated at the nearly physical pion mass, $m_pi simeq 146$ MeV, including hyperon forces which lead to form $OmegaOmega$ and $NOmega$ dibaryons.
In this paper, employing an all-to-all quark propagator technique, we investigate the kaon-nucleon interactions in lattice QCD. We calculate the S-wave kaon-nucleon potentials at the leading order in the derivative expansion in the time-dependent HAL QCD method, using (2+1)-flavor gauge configurations at the lattice spacing $a approx 0.09$ fm on $32^3 times 64$ lattices and the pion mass $m_{pi} approx 570$ MeV. We take the one-end trick for all-to-all propagators, which allows us to put the zero momentum hadron operators at both source and sink and to smear quark operators at the source. We find the stronger repulsive interaction in the $I=1$ channel than in the $I=0$. The phase shifts obtained by solving the Schr{o}dinger equations with the potentials qualitatively reproduce the energy dependence of the experimental phase shifts, and have the similar behavior to the previous results from lattice QCD without all-to-all propagators. Our study demonstrates that the all-to-all quark propagator technique with the one-end trick is useful to study interactions for meson-baryon systems in the HAL QCD method, so that we will apply it to meson-baryon systems which contain quark-antiquark creation/annihilation processes in our future studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا