No Arabic abstract
In this paper, employing an all-to-all quark propagator technique, we investigate the kaon-nucleon interactions in lattice QCD. We calculate the S-wave kaon-nucleon potentials at the leading order in the derivative expansion in the time-dependent HAL QCD method, using (2+1)-flavor gauge configurations at the lattice spacing $a approx 0.09$ fm on $32^3 times 64$ lattices and the pion mass $m_{pi} approx 570$ MeV. We take the one-end trick for all-to-all propagators, which allows us to put the zero momentum hadron operators at both source and sink and to smear quark operators at the source. We find the stronger repulsive interaction in the $I=1$ channel than in the $I=0$. The phase shifts obtained by solving the Schr{o}dinger equations with the potentials qualitatively reproduce the energy dependence of the experimental phase shifts, and have the similar behavior to the previous results from lattice QCD without all-to-all propagators. Our study demonstrates that the all-to-all quark propagator technique with the one-end trick is useful to study interactions for meson-baryon systems in the HAL QCD method, so that we will apply it to meson-baryon systems which contain quark-antiquark creation/annihilation processes in our future studies.
In this paper, we perform the first application of the hybrid method (exact low modes plus stochastically estimated high modes) for all-to-all propagators to the HAL QCD method. We calculate the HAL QCD potentials in the $I=2$ $pipi$ scattering in order to see how statistical fluctuations of the potential behave under the hybrid method. All of the calculations are performed with the 2+1 flavor gauge configurations on $16^3 times 32$ lattice at the lattice spacing $a approx 0.12$ fm and $m_{pi} approx 870$ MeV. It is revealed that statistical errors for the potential are enhanced by stochastic noises introduced by the hybrid method, which, however, are shown to be reduced by increasing the level of dilutions, in particular, that of space dilutions. From systematic studies, we obtain a guiding principle for a choice of dilution types/levels and a number of eigenvectors to reduce noise contaminations to the potential while keeping numerical costs reasonable. We also confirm that we can obtain the scattering phase shifts for the $I=2$ $pipi$ system by the hybrid method within a reasonable numerical cost, which are consistent with the result obtained with the conventional method. The knowledge we obtain in this study will become useful to investigate hadron resonances which require quark annihilation diagrams such as the $rho$ meson by the HAL QCD potential with the hybrid method.
In this paper, we report recent developments of the HAL QCD method for two hadron systems which contain quark annihilation processes using all-to-all quark propagators. We employ the hybrid method for all-to-all propagators, which combines a low-mode spectral decomposition of the quark propagator and stochastic estimators for remaining high modes, to evaluate the HAL QCD potentials for the first time. Using this method, we investigate the $I= 1,2$ $pi pi$ scatterings at $m_{pi} approx 870$ MeV. In the $I=2$ study, we study how statistical fluctuations of the HAL QCD potentials are increased due to stochastic estimators in the hybrid method, compared with the conventional one without them. We find that we can reduce statistical fluctuations by dilutions of stochastic noises in order to obtain sufficiently precise results, which turn out to be consistent with conventional results without all-to-all propagators. In the $I=1$ $pi pi$ case, which contains quark annihilation processes, we find that statistical fluctuations are further enhanced due to noise contaminations in annihilation processes. We, however, confirm that we can also reduce such statistical fluctuations to obtain the potential with a reasonable precision as long as we further increase a degree of dilutions at a price of large numerical costs and take an appropriate scheme for the potential.
In this article, we review the HAL QCD method to investigate baryon-baryon interactions such as nuclear forces in lattice QCD. We first explain our strategy in detail to investigate baryon-baryon interactions by defining potentials in field theories such as QCD. We introduce the Nambu-Bethe-Salpeter (NBS) wave functions in QCD for two baryons below the inelastic threshold. We then define the potential from NBS wave functions in terms of the derivative expansion, which is shown to reproduce the scattering phase shifts correctly below the inelastic threshold. Using this definition, we formulate a method to extract the potential in lattice QCD. Secondly, we discuss pros and cons of the HAL QCD method, by comparing it with the conventional method, where one directly extracts the scattering phase shifts from the finite volume energies through the Luschers formula. We give several theoretical and numerical evidences that the conventional method combined with the naive plateau fitting for the finite volume energies in the literature so far fails to work on baryon-baryon interactions due to contaminations of elastic excited states. On the other hand, we show that such a serious problem can be avoided in the HAL QCD method by defining the potential in an energy-independent way. We also discuss systematics of the HAL QCD method, in particular errors associated with a truncation of the derivative expansion. Thirdly, we present several results obtained from the HAL QCD method, which include (central) nuclear force, tensor force, spin-orbital force, and three nucleon force. We finally show the latest results calculated at the nearly physical pion mass, $m_pi simeq 146$ MeV, including hyperon forces which lead to form $OmegaOmega$ and $NOmega$ dibaryons.
Using combined strong coupling and hopping parameter expansions, we derive an effective three-dimensional theory from thermal lattice QCD with heavy Wilson quarks. The theory depends on traced Polyakov loops only and correctly reflects the centre symmetry of the pure gauge sector as well as its breaking by finite mass quarks. It is valid up to certain orders in the lattice gauge coupling and hopping parameter, which can be systematically improved. To its current order it is controlled for lattices up to N_tausim 6 at finite temperature. For nonzero quark chemical potentials, the effective theory has a fermionic sign problem which is mild enough to carry out simulations up to large chemical potentials. Moreover, by going to a flux representation of the partition function, the sign problem can be solved. As an application, we determine the deconfinement transition and its critical end point as a function of quark mass and all chemical potentials.
We describe a method to construct irreducible baryon operators using all-to-all quark propagators. It was demonstrated earlier that a large basis of extended baryon operators on anisotropic, quenched lattices can be used to reliably extract the masses of 5 or more excited states in the nucleon channel. All-to-all quark propagators are expected to be needed when studying these excited states on light, dynamical configurations because contributions from multi-particle states are expected to be significant. The dilution method is used to approximate the all-to-all quark propagators. Low-lying eigenmodes can also be used if necessary. For efficient computation of matrix elements of the interpolating operators, the algorithms should exploit the fact that many extended baryon operators can be obtained from the different linear combinations of three-quark colour-singlet operators. The sparseness of the diluted noise vectors also afford several computation simplifications. Some preliminary results are presented for nucleon effective masses.