Do you want to publish a course? Click here

Current direction anisotropy of the spin Hall magnetoresistance in nickel ferrite thin films with bulk-like magnetic properties

158   0   0.0 ( 0 )
 Added by Matthias Althammer
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We utilize spin Hall magnetoresistance (SMR) measurements to experimentally investigate the pure spin current transport and magnetic properties of nickel ferrite (NiFe2O4,NFO)/normal metal (NM) thin film heterostructures. We use (001)-oriented NFO thin films grown on lattice-matched magnesium gallate substrates by pulsed laser deposition, which significantly improves the magnetic and structural properties of the ferrimagnetic insulator. The NM in our experiments is either Pt or Ta. A comparison of the obtained SMR magnitude for charge currents applied in the [100]- and [110]-direction of NFO yields a change of 50% for Pt at room temperature. We also investigated the temperature dependence of this current direction anisotropy and find that it is qualitatively different for the conductivity and the SMR magnitude. From our results we conclude that the observed current direction anisotropy may originate from an anisotropy of the spin mixing conductance or of the spin Hall effect in these Pt and Ta layers, and/or additional spin-galvanic contributions from the NFO/NM interface.



rate research

Read More

In magnetic topological phases of matter, the quantum anomalous Hall (QAH) effect is an emergent phenomenon driven by ferromagnetic doping, magnetic proximity effects and strain engineering. The realization of QAH states with multiple dissipationless edge and surface conduction channels defined by a Chern number $mathcal{C}geq1$ was foreseen for the ferromagnetically ordered SnTe class of topological crystalline insulators (TCIs). From magnetotransport measurements on Sn$_{1-x}$Mn$_{x}$Te ($0.00leq{x}leq{0.08}$)(111) epitaxial thin films grown by molecular beam epitaxy on BaF$_{2}$ substrates, hole mediated ferromagnetism is observed in samples with $xgeq0.06$ and the highest $T_mathrm{c}sim7.5,mathrm{K}$ is inferred from an anomalous Hall behavior in Sn$_{0.92}$Mn$_{0.08}$Te. The sizable anomalous Hall angle $sim$0.3 obtained for Sn$_{0.92}$Mn$_{0.08}$Te is one of the greatest reported for magnetic topological materials. The ferromagnetic ordering with perpendicular magnetic anisotropy, complemented by the inception of anomalous Hall effect in the Sn$_{1-x}$Mn$_{x}$Te layers for a thickness commensurate with the decay length of the top and bottom surface states, points at Sn$_{1-x}$Mn$_{x}$Te as a preferential platform for the realization of QAH states in ferromagnetic TCIs.
We observe an unusual behavior of the spin Hall magnetoresistance (SMR) measured in a Pt ultra-thin film deposited on a ferromagnetic insulator, which is a tensile-strained LaCoO3 (LCO) thin film with the Curie temperature Tc=85K. The SMR displays a strong magnetic-field dependence below Tc, with the SMR amplitude continuing to increase (linearly) with increasing the field far beyond the saturation value of the ferromagnet. The SMR amplitude decreases gradually with raising the temperature across Tc and remains measurable even above Tc. Moreover, no hysteresis is observed in the field dependence of the SMR. These results indicate that a novel low-dimensional magnetic system forms on the surface of LCO and that the Pt/LCO interface decouples magnetically from the rest of the LCO thin film. To explain the experiment, we revisit the derivation of the SMR corrections and relate the spin-mixing conductances to the microscopic quantities describing the magnetism at the interface. Our results can be used as a technique to probe quantum magnetism on the surface of a magnetic insulator.
Nitrogen vacancy (NV) centers, optically active atomic defects in diamond, have been widely applied to emerging quantum sensing, imaging, and network efforts, showing unprecedented field sensitivity and nanoscale spatial resolution. Many of these advantages derive from their excellent quantum-coherence, controllable entanglement, and high fidelity of operations, enabling opportunities to outperform the classical counterpart. Exploiting this cutting-edge quantum metrology, we report noninvasive measurement of intrinsic spin fluctuations of magnetic insulator thin films with a spontaneous out-of-plane magnetization. The measured field dependence of NV relaxation rates is well correlated to the variation of magnon density and band structure of the magnetic samples, which are challenging to access by the conventional magnetometry methods. Our results highlight the significant opportunities offered by NV centers in diagnosing the noise environment of functional magnetic elements, providing valuable information to design next-generation, high-density, and scalable spintronic devices.
The large curvature effects on micromagnetic energy of a thin ferromagnetic film with nonlocal dipolar energy are considered. We predict that the dipolar interaction and surface curvature can produce perpendicular anisotropy which can be controlled by engineering a special type of periodic surface shape structure. Similar effects can be achieved by a significant surface roughness in the film. We show that in general the anisotropy can point in an arbitrary direction depending on the surface curvature. We provide simple examples of these periodic surface structures to demonstrate how to engineer particular anisotropies in the film.
Nanosheets of nickel with thickness equal to 0.6 nm have been grown within the interlayer spaces of Na-4 mica. The sheets are made up of percolative clusters of nanodisks. Magnetization characteristics indicate a superparamagnetic behavior with a blocking temperature of 428 K.The magnetic anisotropy constant as extracted from the coercivity data has been found to be higher than that of bulk nickel by two orders of magnitude. This is ascribed to a large aspect ratio of the nickel nanophase. The Bloch exponent is also found to be considerably different from that of bulk nickel because of a size effect. The Bloch Equation is still found to be valid for the two dimensional structures.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا