Do you want to publish a course? Click here

Massive MIMO-based Localization and Mapping Exploiting Phase Information of Multipath Components

69   0   0.0 ( 0 )
 Added by Xuhong Li
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In this paper, we present a robust multipath-based localization and mapping framework that exploits the phases of specular multipath components (MPCs) using a massive multiple-input multiple-output (MIMO) array at the base station. Utilizing the phase information related to the propagation distances of the MPCs enables the possibility of localization with extraordinary accuracy even with limited bandwidth. The specular MPC parameters along with the parameters of the noise and the dense multipath component (DMC) are tracked using an extended Kalman filter (EKF), which enables to preserve the distance-related phase changes of the MPC complex amplitudes. The DMC comprises all non-resolvable MPCs, which occur due to finite measurement aperture. The estimation of the DMC parameters enhances the estimation quality of the specular MPCs and therefore also the quality of localization and mapping. The estimated MPC propagation distances are subsequently used as input to a distance-based localization and mapping algorithm. This algorithm does not need prior knowledge about the surrounding environment and base station position. The performance is demonstrated with real radio-channel measurements using an antenna array with 128 ports at the base station side and a standard cellular signal bandwidth of 40 MHz. The results show that high accuracy localization is possible even with such a low bandwidth.



rate research

Read More

Large-scale MIMO systems are well known for their advantages in communications, but they also have the potential for providing very accurate localization thanks to their high angular resolution. A difficult problem arising indoors and outdoors is localizing users over multipath channels. Localization based on angle of arrival (AOA) generally involves a two-step procedure, where signals are first processed to obtain a users AOA at different base stations, followed by triangulation to determine the users position. In the presence of multipath, the performance of these methods is greatly degraded due to the inability to correctly detect and/or estimate the AOA of the line-of-sight (LOS) paths. To counter the limitations of this two-step procedure which is inherently sub-optimal, we propose a direct localization approach in which the position of a user is localized by jointly processing the observations obtained at distributed massive MIMO base stations. Our approach is based on a novel compressed sensing framework that exploits channel properties to distinguish LOS from non-LOS signal paths, and leads to improved performance results compared to previous existing methods.
Localization of radio frequency sources over multipath channels is a difficult problem arising in applications such as outdoor or indoor gelocation. Common approaches that combine ad-hoc methods for multipath mitigation with indirect localization relying on intermediary parameters such as time-of-arrivals, time difference of arrivals or received signal strengths, provide limited performance. This work models the localization of known waveforms over unknown multipath channels in a sparse framework, and develops a direct approach in which multiple sources are localized jointly, directly from observations obtained at distributed sources. The proposed approach exploits channel properties that enable to distinguish line-of-sight (LOS) from non-LOS signal paths. Theoretical guarantees are established for correct recovery of the sources locations by atomic norm minimization. A second-order cone-based algorithm is developed to produce the optimal atomic decomposition, and it is shown to produce high accuracy location estimates over complex scenes, in which sources are subject to diverse multipath conditions, including lack of LOS.
This paper investigates the problem of estimating sparse channels in massive MIMO systems. Most wireless channels are sparse with large delay spread, while some channels can be observed having sparse common support (SCS) within a certain area of the antenna array, i.e., the antenna array can be grouped into several clusters according to the sparse supports of channels. The SCS property is attractive when it comes to the estimation of large number of channels in massive MIMO systems. Using the SCS of channels, one expects better performance, but the number of clusters and the elements for each cluster are always unknown in the receiver. In this paper, {the Dirichlet process} is exploited to model such sparse channels where those in each cluster have SCS. We proposed a low complexity message passing based sparse Bayesian learning to perform channel estimation in massive MIMO systems by using combined BP with MF on a factor graph. Simulation results demonstrate that the proposed massive MIMO sparse channel estimation outperforms the state-of-the-art algorithms. Especially, it even shows better performance than the variational Bayesian method applied for massive MIMO channel estimation.
97 - Linglong Dai , Jingbo Tan , 2021
Benefiting from tens of GHz bandwidth, terahertz (THz) communication is considered to be a promising technology to provide ultra-high speed data rates for future 6G wireless systems. To compensate for the serious propagation attenuation of THz signals, massive multiple-input multiple-output (MIMO) with hybrid precoding can be utilized to generate directional beams with high array gains. However, the standard hybrid precoding architecture based on frequency-independent phase-shifters cannot cope with the beam split effect in THz massive MIMO systems, where the directional beams will split into different physical directions at different subcarrier frequencies. The beam split effect will result in a serious array gain loss across the entire bandwidth, which has not been well investigated in THz massive MIMO systems. In this paper, we first reveal and quantify the seriousness of the beam split effect in THz massive MIMO systems by analyzing the array gain loss it causes. Then, we propose a new precoding architecture called delay-phase precoding (DPP) to mitigate this effect. Specifically, the proposed DPP introduces a time delay network as a new precoding layer between radio-frequency chains and phase-shifters in the standard hybrid precoding architecture. In this way, conventional phase-controlled analog beamforming can be converted into delay-phase controlled analog beamforming. Unlike frequency-independent phase shifts, the time delay network introduced in the DPP can realize frequency-dependent phase shifts, which can be designed to generate frequency-dependent beams towards the target physical direction across the entire THz bandwidth. Due to the joint control of delay and phase, the proposed DPP can significantly relieve the array gain loss caused by the beam split effect. Furthermore, we propose a hardware structure by using true-time-delayers to realize the concept of DPP.
This paper presents an analysis of target localization accuracy, attainable by the use of MIMO (Multiple-Input Multiple-Output) radar systems, configured with multiple transmit and receive sensors, widely distributed over a given area. The Cramer-Rao lower bound (CRLB) for target localization accuracy is developed for both coherent and non-coherent processing. Coherent processing requires a common phase reference for all transmit and receive sensors. The CRLB is shown to be inversely proportional to the signal effective bandwidth in the non-coherent case, but is approximately inversely proportional to the carrier frequency in the coherent case. We further prove that optimization over the sensors positions lowers the CRLB by a factor equal to the product of the number of transmitting and receiving sensors. The best linear unbiased estimator (BLUE) is derived for the MIMO target localization problem. The BLUEs utility is in providing a closed form localization estimate that facilitates the analysis of the relations between sensors locations, target location, and localization accuracy. Geometric dilution of precision (GDOP) contours are used to map the relative performance accuracy for a given layout of radars over a given geographic area.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا