Do you want to publish a course? Click here

Delay-Phase Precoding for Wideband THz Massive MIMO

98   0   0.0 ( 0 )
 Added by Jingbo Tan
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Benefiting from tens of GHz bandwidth, terahertz (THz) communication is considered to be a promising technology to provide ultra-high speed data rates for future 6G wireless systems. To compensate for the serious propagation attenuation of THz signals, massive multiple-input multiple-output (MIMO) with hybrid precoding can be utilized to generate directional beams with high array gains. However, the standard hybrid precoding architecture based on frequency-independent phase-shifters cannot cope with the beam split effect in THz massive MIMO systems, where the directional beams will split into different physical directions at different subcarrier frequencies. The beam split effect will result in a serious array gain loss across the entire bandwidth, which has not been well investigated in THz massive MIMO systems. In this paper, we first reveal and quantify the seriousness of the beam split effect in THz massive MIMO systems by analyzing the array gain loss it causes. Then, we propose a new precoding architecture called delay-phase precoding (DPP) to mitigate this effect. Specifically, the proposed DPP introduces a time delay network as a new precoding layer between radio-frequency chains and phase-shifters in the standard hybrid precoding architecture. In this way, conventional phase-controlled analog beamforming can be converted into delay-phase controlled analog beamforming. Unlike frequency-independent phase shifts, the time delay network introduced in the DPP can realize frequency-dependent phase shifts, which can be designed to generate frequency-dependent beams towards the target physical direction across the entire THz bandwidth. Due to the joint control of delay and phase, the proposed DPP can significantly relieve the array gain loss caused by the beam split effect. Furthermore, we propose a hardware structure by using true-time-delayers to realize the concept of DPP.



rate research

Read More

186 - Jingbo Tan , Linglong Dai 2021
Terahertz (THz) communication is considered to be a promising technology for future 6G network. To overcome the severe attenuation and relieve the high power consumption, massive MIMO with hybrid precoding has been widely considered for THz communication. However, accurate wideband channel estimation is challenging in THz massive MIMO systems. The existing wideband channel estimation schemes based on the ideal assumption of common sparse channel support will suffer from a severe performance loss due to the beam split effect. In this paper, we propose a beam split pattern detection based channel estimation scheme to realize reliable wideband channel estimation. Specifically, a comprehensive analysis on the angle-domain sparse structure of the wideband channel is provided by considering the beam split effect. Based on the analysis, we define a series of index sets called as beam split patterns, which are proved to have a one-to-one match to different physical channel directions. Inspired by this one-to-one match, we propose to estimate the physical channel direction by exploiting beam split patterns at first. Then, the sparse channel supports at different subcarriers can be obtained by utilizing a support detection window. This support detection window is generated by expanding the beam split pattern which is determined by the obtained physical channel direction. The above estimation procedure will be repeated path by path until all path components are estimated. The proposed scheme exploits the wideband channel property implied by the beam split effect, which can significantly improve the channel estimation accuracy. Simulation results show that the proposed scheme is able to achieve higher accuracy than existing schemes.
Linear precoding techniques can achieve near- optimal capacity due to the special channel property in down- link massive MIMO systems, but involve high complexity since complicated matrix inversion of large size is required. In this paper, we propose a low-complexity linear precoding scheme based on the Gauss-Seidel (GS) method. The proposed scheme can achieve the capacity-approaching performance of the classical linear precoding schemes in an iterative way without complicated matrix inversion, which can reduce the overall complexity by one order of magnitude. The performance guarantee of the proposed GS-based precoding is analyzed from the following three aspects. At first, we prove that GS-based precoding satisfies the transmit power constraint. Then, we prove that GS-based precoding enjoys a faster convergence rate than the recently proposed Neumann-based precoding. At last, the convergence rate achieved by GS-based precoding is quantified, which reveals that GS-based precoding converges faster with the increasing number of BS antennas. To further accelerate the convergence rate and reduce the complexity, we propose a zone-based initial solution to GS-based precoding, which is much closer to the final solution than the traditional initial solution. Simulation results demonstrate that the proposed scheme outperforms Neumann- based precoding, and achieves the exact capacity-approaching performance of the classical linear precoding schemes with only a small number of iterations both in Rayleigh fading channels and spatially correlated channels.
93 - Shuang Qiu , Da Chen , Daiming Qu 2017
In this paper, the feasibility of a new downlink transmission mode in massive multi-input multi-output (MIMO) systems is investigated with two types of users, i.e., the users with only statistical channel state information (CSI) and the users with imperfect instantaneous CSI. The problem of downlink precoding design with mixed utilization of statistical and imperfect instantaneous CSI is addressed. We first theoretically analyze the impact of the mutual interference between the two types of users on their achievable rate. Then, considering the mutual interference suppression, we propose an extended zero-forcing (eZF) and an extended maximum ratio transmission (eMRT) precoding methods to minimize the total transmit power of base station and to maximize the received signal power of users, respectively. Thanks to the exploitation of statistical CSI, pilot-based channel estimation is avoided enabling more active users, higher system sum rate and shorter transmission delay. Finally, simulations are performed to validate the accuracy of the theoretical analysis and the advantages of the proposed precoding methods.
This paper investigates user cooperation in massive multiple-input multiple-output (MIMO) systems with cascaded precoding. The high-dimensional physical channel in massive MIMO systems can be converted into a low-dimensional effective channel through the inner precoder to reduce the overhead of channel estimation and feedback. The inner precoder depends on the spatial covariance matrix of the channels, and thus the same precoder can be used for different users as long as they have the same spatial covariance matrix. Spatial covariance matrix is determined by the surrounding environment of user terminals. Therefore, the users that are close to each other will share the same spatial covariance matrix. In this situation, it is possible to achieve user cooperation by sharing receiver information through some dedicated link, such as device-to-device communications. To reduce the amount of information that needs to be shared, we propose a decoding codebook based scheme, which can achieve user cooperation without the need of channel state information. Moreover, we also investigate the amount of bandwidth required to achieve efficient user cooperation. Simulation results show that user cooperation can improve the capacity compared to the non-cooperation scheme.
In this paper, we investigate the quantization and the feedback of downlink spatial covariance matrix for massive multiple-input multiple-output (MIMO) systems with cascaded precoding. Massive MIMO has gained a lot of attention recently because of its ability to significantly improve the network performance. To reduce the overhead of downlink channel estimation and uplink feedback in frequency-division duplex massive MIMO systems, cascaded precoding has been proposed, where the outer precoder is implemented using traditional limited feedback while the inner precoder is determined by the spatial covariance matrix of the channels. In massive MIMO systems, it is difficult to quantize the spatial covariance matrix because of its large size caused by the huge number of antennas. In this paper, we propose a spatial spectrum based approach for the quantization and the feedback of the spatial covariance matrix. The proposed inner precoder can be viewed as modulated discrete prolate spheroidal sequences and thus achieve much smaller spatial leakage than the traditional discrete Fourier transform submatrix based precoding. Practical issues for the application of the proposed approach are also addressed in this paper.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا