Do you want to publish a course? Click here

High Precision TOA-based Direct Localization of Multiple Sources in Multipath

84   0   0.0 ( 0 )
 Added by Nil Garcia
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Localization of radio frequency sources over multipath channels is a difficult problem arising in applications such as outdoor or indoor gelocation. Common approaches that combine ad-hoc methods for multipath mitigation with indirect localization relying on intermediary parameters such as time-of-arrivals, time difference of arrivals or received signal strengths, provide limited performance. This work models the localization of known waveforms over unknown multipath channels in a sparse framework, and develops a direct approach in which multiple sources are localized jointly, directly from observations obtained at distributed sources. The proposed approach exploits channel properties that enable to distinguish line-of-sight (LOS) from non-LOS signal paths. Theoretical guarantees are established for correct recovery of the sources locations by atomic norm minimization. A second-order cone-based algorithm is developed to produce the optimal atomic decomposition, and it is shown to produce high accuracy location estimates over complex scenes, in which sources are subject to diverse multipath conditions, including lack of LOS.

rate research

Read More

In this paper, we present a robust multipath-based localization and mapping framework that exploits the phases of specular multipath components (MPCs) using a massive multiple-input multiple-output (MIMO) array at the base station. Utilizing the phase information related to the propagation distances of the MPCs enables the possibility of localization with extraordinary accuracy even with limited bandwidth. The specular MPC parameters along with the parameters of the noise and the dense multipath component (DMC) are tracked using an extended Kalman filter (EKF), which enables to preserve the distance-related phase changes of the MPC complex amplitudes. The DMC comprises all non-resolvable MPCs, which occur due to finite measurement aperture. The estimation of the DMC parameters enhances the estimation quality of the specular MPCs and therefore also the quality of localization and mapping. The estimated MPC propagation distances are subsequently used as input to a distance-based localization and mapping algorithm. This algorithm does not need prior knowledge about the surrounding environment and base station position. The performance is demonstrated with real radio-channel measurements using an antenna array with 128 ports at the base station side and a standard cellular signal bandwidth of 40 MHz. The results show that high accuracy localization is possible even with such a low bandwidth.
In additive white gaussian noise (AWGN) channel, chaos has been proved to be the optimal coherent communication waveform in the sense of using very simple matched filter to maximize the signal-to-noise ratio (SNR). Recently, Lyapunov exponent spectrum of the chaotic signals after being transmitted through a wireless channel has been shown to be unaltered, paving the way for wireless communication using chaos. In wireless communication systems, inter-symbol interference (ISI) caused by multipath propagation is one of the main obstacles to achieve high bit transmission rate and low bit error rate (BER). How to resist multipath effect is a fundamental problem in a chaos-based wireless communication system (CWCS). In this paper, implementation of a CWCS is presented. It is built to transmit chaotic signals generated by a hybrid dynamical system and then to filter the received signals by using the corresponding matched filter to decrease the noise effect and to detect the binary information. We find that the multipath effect can be effectively resisted by regrouping the return map of the received signal and by setting the corresponding threshold based on the available information. We show that the optimal threshold is a function of the channel parameters and of the transmitted information symbols. Practically, the channel parameters are time-variant, and the future information symbols are unavailable. In this case, a suboptimal threshold (SOT) is proposed, and the BER using the SOT is derived analytically. Simulation results show that the CWCS achieves a remarkable competitive performance even under inaccurate channel parameters.
Large-scale MIMO systems are well known for their advantages in communications, but they also have the potential for providing very accurate localization thanks to their high angular resolution. A difficult problem arising indoors and outdoors is localizing users over multipath channels. Localization based on angle of arrival (AOA) generally involves a two-step procedure, where signals are first processed to obtain a users AOA at different base stations, followed by triangulation to determine the users position. In the presence of multipath, the performance of these methods is greatly degraded due to the inability to correctly detect and/or estimate the AOA of the line-of-sight (LOS) paths. To counter the limitations of this two-step procedure which is inherently sub-optimal, we propose a direct localization approach in which the position of a user is localized by jointly processing the observations obtained at distributed massive MIMO base stations. Our approach is based on a novel compressed sensing framework that exploits channel properties to distinguish LOS from non-LOS signal paths, and leads to improved performance results compared to previous existing methods.
313 - Amir Adler , Mati Wax 2018
We present novel solutions to the problem of direct localization of multiple narrow-band and arbitrarily correlated sources by partly calibrated arrays, i.e., arrays composed of fully calibrated sub-arrays yet lacking inter-array calibration. The solutions presented vary in their performance and computational complexity. We present first a relaxed maximum likelihood solution whose concentrated likelihood involves only the unknown locations of the sources and requires an eigen-decomposition of the array covariance matrix at every potential location. To reduce the computational load, we introduce an approximation which eliminates the need for such an eigen-decomposition at every potential location. To further reduce the computational load, novel MUSIC-like and MVDR-like solutions are presented which are computationally much simpler than the existing solutions. The performance of these solutions is evaluated and compared via simulations.
115 - Tobias Koch , Amos Lapidoth 2008
The capacity of discrete-time, non-coherent, multipath fading channels is considered. It is shown that if the delay spread is large in the sense that the variances of the path gains do not decay faster than geometrically, then capacity is bounded in the signal-to-noise ratio.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا