Do you want to publish a course? Click here

Modeling Rape Reporting Delays Using Spatial, Temporal and Social Features

84   0   0.0 ( 0 )
 Added by Konstantin Klemmer
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We present a novel approach to estimate the delay observed between the occurrence and reporting of rape crimes. We explore spatial, temporal and social effects in sparse aggregated (area-level) and high-dimensional disaggregated (event-level) data for New York and Los Angeles. Focusing on inference, we apply Gradient Boosting and Random Forests to assess predictor importance, as well as Gaussian Processes to model spatial disparities in reporting times. Our results highlight differences and similarities between the two cities. We identify at-risk populations and communities which may be targeted with focused policies and interventions to support rape victims, apprehend perpetrators, and prevent future crimes.



rate research

Read More

The analysis of individual X-ray sources that appear in a crowded field can easily be compromised by the misallocation of recorded events to their originating sources. Even with a small number of sources, that nonetheless have overlapping point spread functions, the allocation of events to sources is a complex task that is subject to uncertainty. We develop a Bayesian method designed to sift high-energy photon events from multiple sources with overlapping point spread functions, leveraging the differences in their spatial, spectral, and temporal signatures. The method probabilistically assigns each event to a given source. Such a disentanglement allows more detailed spectral or temporal analysis to focus on the individual component in isolation, free of contamination from other sources or the background. We are also able to compute source parameters of interest like their locations, relative brightness, and background contamination, while accounting for the uncertainty in event assignments. Simulation studies that include event arrival time information demonstrate that the temporal component improves event disambiguation beyond using only spatial and spectral information. The proposed methods correctly allocate up to 65% more events than the corresponding algorithms that ignore event arrival time information. We apply our methods to two stellar X-ray binaries, UV Cet and HBC515 A, observed with Chandra. We demonstrate that our methods are capable of removing the contamination due to a strong flare on UV Cet B in its companion approximately 40 times weaker during that event, and that evidence for spectral variability at timescales of a few ks can be determined in HBC515 Aa and HBC515 Ab.
Scaled physical modeling is an important means to understand the behavior of fluids in nature. However, a common source of errors is conflicting similarity criteria. Here, we present using hypergravity to improve the scaling similarity of gravity-dominated fluid convection, e.g. natural convection and multi-phase flow. We demonstrate the validity of the approach by investigating water-brine buoyant jet experiments conducted under hypergravity created by a centrifuge. Results show that the scaling similarity increases with the gravitational acceleration. In particular, the model best represents the prototype under N3g with a spatial scale of 1/N and a time scale of 1/N2 by simultaneously satisfying the Froude and Reynolds criteria. The significance of centrifuge radius and fluid velocity in determining the accuracy of the scaled model is discussed in the light of Coriolis force and turbulence. This study demonstrates a new direction for the physical modeling of fluids subject to gravity with broad application prospects.
We propose SAINT+, a successor of SAINT which is a Transformer based knowledge tracing model that separately processes exercise information and student response information. Following the architecture of SAINT, SAINT+ has an encoder-decoder structure where the encoder applies self-attention layers to a stream of exercise embeddings, and the decoder alternately applies self-attention layers and encoder-decoder attention layers to streams of response embeddings and encoder output. Moreover, SAINT+ incorporates two temporal feature embeddings into the response embeddings: elapsed time, the time taken for a student to answer, and lag time, the time interval between adjacent learning activities. We empirically evaluate the effectiveness of SAINT+ on EdNet, the largest publicly available benchmark dataset in the education domain. Experimental results show that SAINT+ achieves state-of-the-art performance in knowledge tracing with an improvement of 1.25% in area under receiver operating characteristic curve compared to SAINT, the current state-of-the-art model in EdNet dataset.
Cyber peacekeeping is an emerging and multi-disciplinary field of research, touching upon technical, political and societal domains of thought. In this article we build upon previous works by developing the cyber peacekeeping activity of observation, monitoring and reporting. We take a practical approach: describing a scenario in which two countries request UN support in drawing up and overseeing a ceasefire which includes cyber terms. We explore how a cyber peacekeeping operation could start up and discuss the challenges it will face. The article makes a number of proposals, including the use of a virtual collaborative environment to bring multiple benefits. We conclude by summarising our findings, and describing where further work lies.
We propose the spatial-temporal aggregated predictor (STAP) modeling framework to address measurement and estimation issues that arise when assessing the relationship between built environment features (BEF) and health outcomes. Many BEFs can be mapped as point locations and thus traditional exposure metrics are based on the number of features within a pre-specified spatial unit. The size of the spatial unit--or spatial scale--that is most appropriate for a particular health outcome is unknown and its choice inextricably impacts the estimated health effect. A related issue is the lack of knowledge of the temporal scale--or the length of exposure time that is necessary for the BEF to render its full effect on the health outcome. The proposed STAP model enables investigators to estimate both the spatial and temporal scales for a given BEF in a data-driven fashion, thereby providing a flexible solution for measuring the relationship between outcomes and spatial proximity to point-referenced exposures. Simulation studies verify the validity of our method for estimating the scales as well as the association between availability of BEFs and health outcomes. We apply this method to estimate the spatial-temporal association between supermarkets and BMI using data from the Multi-Ethnic Atherosclerosis Study, demonstrating the methods applicability in cohort studies.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا