Do you want to publish a course? Click here

Evidence for degenerate mirrorless lasing in alkali metal vapor: forward beam magneto-optical experiment

73   0   0.0 ( 0 )
 Added by Guzhi Bao
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report an experimental observation of degenerate mirrorless lasing in forward direction under excitation of a dilute atomic Rb vapor with a single linearly polarized cw laser light resonant with cycling Fe > Fg atomic D2 transitions. Light polarized orthogonally to the laser light is generated for the input light intensity exceeding a threshold value of about 3 mW/cm^2. Application of a transverse magnetic field directed along the input light polarization reveals a sharp about 20 mG wide magnetic resonance centered at B = 0. Increasing the incident light intensity from 3 to 300 mW/cm^2, the generated light undergoes rapid amplitude increase followed by a decline and resonance broadening. Such nonlinear behavior of the observed magnetic resonance is attributed to the population inversion on optical transitions between magnetic sublevels established under linearly polarized excitation. We present observations that indicate that a combination of nonlinear-optical effects occurs in this system, including degenerate mirrorless lasing and four-wave mixing.



rate research

Read More

We present a versatile and compact electron beam driven source for alkali metal atoms, which can be implemented in cryostats. With a heat load of less than 10mW, the heat dissipation normalized to the atoms loaded into the magneto-optical Trap (MOT), is about a factor 1000 smaller than for a typical alkali metal dispenser. The measured linear scaling of the MOT loading rate with electron current observed in the experiments, indicates that electron stimulated desorption is the corresponding mechanism to release the atoms.
The nonlinear Zeeman effect can induce splittings and asymmetries of magnetic-resonance lines in the geophysical magnetic-field range. We demonstrate a scheme to suppress the nonlinear Zeeman effect all optically based on spin locking. Spin locking is achieved with an effective oscillating magnetic field provided by the AC Stark-shift of an intensity-modulated and polarization-modulated laser beam. This results in the collapse of the multi-component asymmetric magnetic-resonance line with about 100 Hz width in the Earth-field range into a peak with a central component width of 25Hz. The technique is expected to be broadly applicable in practical magnetometry, potentially boosting the sensitivity and accuracy of Earth-surveying magnetometers by increasing the magnetic-resonance amplitude and decreasing its width. Advantage of an all-optical approach is the absence of cross-talk between nearby sensors when these are used in a gradiometric or in an array arrangement.
We have shown that it is possible to model accurately optical phenomena in intense laser fields by taking into account the intensity distribution over the laser beam. We developed a theoretical model that divided an intense laser beam into concentric regions, each with a Rabi frequency that corresponds to the intensity in that region, and solved a set of coupled optical Bloch equations for the density matrix in each region. Experimentally obtained magneto-optical resonance curves for the $F_g=2longrightarrow F_e=1$ transition of the $D_1$ line of $^{87}$Rb agreed very well with the theoretical model up to a laser intensity of around 200 mW/cm$^2$ for a transition whose saturation intensity is around 4.5 mW/cm$^2$. We have studied the spatial dependence of the fluorescence intensity in an intense laser beam experimentally and theoretically. An experiment was conducted whereby a broad, intense pump laser excited the $F_g=4longrightarrow F_e=3$ transition of the $D_2$ line of cesium while a weak, narrow probe beam scanned the atoms within the pump beam and excited the $D_1$ line of cesium, whose fluorescence was recorded as a function of probe beam position. Experimentally obtained spatial profiles of the fluorescence intensity agreed qualitatively with the predictions of the model.
Nonlinear magneto-optical (NMO) resonances occurring for near-zero magnetic field are studied in Rb vapor using light-noise spectroscopy. With a balanced detection polarimeter, we observe high contrast variations of the noise power (at fixed analysis frequency) carried by diode laser light resonant with the 5S$_{1/2}(F=2) to 5$P$_{1/2}(F=1) $ transition of $^{87}$Rb and transmitted through a rubidium vapor cell, as a function of magnetic field $B$. A symmetric resonance doublet of anti-correlated noise is observed for orthogonal polarizations around $B=0 $ as a manifestation of ground state coherence. We also observe sideband noise resonances when the magnetic field produces an atomic Larmor precession at a frequency corresponding to one half of the analysis frequency. The resonances on the light fluctuations are the consequence of phase to amplitude noise conversion owing to nonlinear coherence effects in the response of the atomic medium to the fluctuating field. A theoretical model (derived from linearized Bloch equations) is presented that reproduces the main qualitative features of the experimental signals under simple assumptions.
We have developed a unique neutralizer device that uses an yttrium target surrounded by a platinum wall to magneto-optically trap radioactive atoms. In general, the radioactive nucleus produced in a nuclear reaction is extracted and transported in ion form. For the magneto-optical trap, thermal neutralization must occur on the surface of a metal with a small work function. The converter can produce a neutral atomic beam with small angular divergence that, given the recycling of atoms and ions, converts ions into neutral atoms with remarkable efficiency. We demonstrated the ion neutralization process using stable rubidium and confirmed $10^6$ neutralized atoms in the magneto-optical trap. Additionally, the experiment using francium demonstrated the obtaining of neutralized francium atoms.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا