Do you want to publish a course? Click here

Alkali ion-to-neutral atom converter for the magneto-optical trap of a radioactive isotope

285   0   0.0 ( 0 )
 Added by Hirokazu Kawamura
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have developed a unique neutralizer device that uses an yttrium target surrounded by a platinum wall to magneto-optically trap radioactive atoms. In general, the radioactive nucleus produced in a nuclear reaction is extracted and transported in ion form. For the magneto-optical trap, thermal neutralization must occur on the surface of a metal with a small work function. The converter can produce a neutral atomic beam with small angular divergence that, given the recycling of atoms and ions, converts ions into neutral atoms with remarkable efficiency. We demonstrated the ion neutralization process using stable rubidium and confirmed $10^6$ neutralized atoms in the magneto-optical trap. Additionally, the experiment using francium demonstrated the obtaining of neutralized francium atoms.



rate research

Read More

We present a versatile and compact electron beam driven source for alkali metal atoms, which can be implemented in cryostats. With a heat load of less than 10mW, the heat dissipation normalized to the atoms loaded into the magneto-optical Trap (MOT), is about a factor 1000 smaller than for a typical alkali metal dispenser. The measured linear scaling of the MOT loading rate with electron current observed in the experiments, indicates that electron stimulated desorption is the corresponding mechanism to release the atoms.
We report an experimental apparatus and technique which simultaneously traps ions and cold atoms with spatial overlap. Such an apparatus is motivated by the study of ion-atom processes at temperatures ranging from hot to ultra-cold. This area is a largely unexplored domain of physics with cold trapped atoms. In this article we discuss the general design considerations for combining these two traps and present our experimental setup. The ion trap and atom traps are characterized independently of each other. The simultaneous operation of both is then described and experimental signatures of the effect of the ions and cold-atoms on each other are presented. In conclusion the use of such an instrument for several problems in physics and chemistry is briefly discussed.
We have demonstrated that the ion current resulting from collisions between metastable krypton atoms in a magneto-optical trap can be used to precisely measure the trap loading rate. We measured both the ion current of the abundant isotope Kr-83 (isotopic abundance = 11%) and the single-atom counting rate of the rare isotope Kr-85 (isotopic abundance ~ 1x10^-11), and found the two quantities to be proportional at a precision level of 0.9%. This work results in a significant improvement in using the magneto-optical trap as an analytical tool for noble-gas isotope ratio measurements, and will benefit both atomic physics studies and applications in the earth sciences.
We demonstrate a Magneto-Optical Trap (MOT) configuration which employs optical forces due to light scattering between electronically excited states of the atom. With the standard MOT laser beams propagating along the {it x}- and {it y}- directions, the laser beams along the {it z}-direction are at a different wavelength that couples two sets of {it excited} states. We demonstrate efficient cooling and trapping of cesium atoms in a vapor cell and sub-Doppler cooling on both the red and blue sides of the two-photon resonance. The technique demonstrated in this work may have applications in background-free detection of trapped atoms, and in assisting laser-cooling and trapping of certain atomic species that require cooling lasers at inconvenient wavelengths.
We propose and demonstrate the laser cooling and trapping of Rydberg-dressed Sr atoms. By off-resonantly coupling the excited state of a narrow (7 kHz) cooling transition to a high-lying Rydberg state, we transfer Rydberg properties such as enhanced electric polarizability to a stable magneto-optical trap operating at $< 1 mu K$. By increasing the density to $1 times 10^{12} rm{cm^{-3}}$, we show that it is possible to reach a regime where the long-range interaction between Rydberg-dressed atoms becomes comparable to the kinetic energy, opening a route to combining laser cooling with tunable long-range interactions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا