Do you want to publish a course? Click here

Decoding Generic Visual Representations From Human Brain Activity using Machine Learning

92   0   0.0 ( 0 )
 Added by Nikolaos Passalis
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Among the most impressive recent applications of neural decoding is the visual representation decoding, where the category of an object that a subject either sees or imagines is inferred by observing his/her brain activity. Even though there is an increasing interest in the aforementioned visual representation decoding task, there is no extensive study of the effect of using different machine learning models on the decoding accuracy. In this paper we provide an extensive evaluation of several machine learning models, along with different similarity metrics, for the aforementioned task, drawing many interesting conclusions. That way, this paper a) paves the way for developing more advanced and accurate methods and b) provides an extensive and easily reproducible baseline for the aforementioned decoding task.



rate research

Read More

In this paper, we propose LGG, a neurologically inspired graph neural network, to learn local-global-graph representations from Electroencephalography (EEG) for a Brain-Computer Interface (BCI). A temporal convolutional layer with multi-scale 1D convolutional kernels and kernel-level attention fusion is proposed to learn the temporal dynamics of EEG. Inspired by neurological knowledge of cognitive processes in the brain, we propose local and global graph-filtering layers to learn the brain activities within and between different functional areas of the brain to model the complex relations among them during the cognitive processes. Under the robust nested cross-validation settings, the proposed method is evaluated on the publicly available dataset DEAP, and the classification performance is compared with state-of-the-art methods, such as FBFgMDM, FBTSC, Unsupervised learning, DeepConvNet, ShallowConvNet, EEGNet, and TSception. The results show that the proposed method outperforms all these state-of-the-art methods, and the improvements are statistically significant (p<0.05) in most cases. The source code can be found at: https://github.com/yi-ding-cs/LGG
Decoding human brain activities via functional magnetic resonance imaging (fMRI) has gained increasing attention in recent years. While encouraging results have been reported in brain states classification tasks, reconstructing the details of human visual experience still remains difficult. Two main challenges that hinder the development of effective models are the perplexing fMRI measurement noise and the high dimensionality of limited data instances. Existing methods generally suffer from one or both of these issues and yield dissatisfactory results. In this paper, we tackle this problem by casting the reconstruction of visual stimulus as the Bayesian inference of missing view in a multiview latent variable model. Sharing a common latent representation, our joint generative model of external stimulus and brain response is not only deep in extracting nonlinear features from visual images, but also powerful in capturing correlations among voxel activities of fMRI recordings. The nonlinearity and deep structure endow our model with strong representation ability, while the correlations of voxel activities are critical for suppressing noise and improving prediction. We devise an efficient variational Bayesian method to infer the latent variables and the model parameters. To further improve the reconstruction accuracy, the latent representations of testing instances are enforced to be close to that of their neighbours from the training set via posterior regularization. Experiments on three fMRI recording datasets demonstrate that our approach can more accurately reconstruct visual stimuli.
Functional magnetic resonance imaging produces high dimensional data, with a less then ideal number of labelled samples for brain decoding tasks (predicting brain states). In this study, we propose a new deep temporal convolutional neural network architecture with spatial pooling for brain decoding which aims to reduce dimensionality of feature space along with improved classification performance. Temporal representations (filters) for each layer of the convolutional model are learned by leveraging unlabelled fMRI data in an unsupervised fashion with regularized autoencoders. Learned temporal representations in multiple levels capture the regularities in the temporal domain and are observed to be a rich bank of activation patterns which also exhibit similarities to the actual hemodynamic responses. Further, spatial pooling layers in the convolutional architecture reduce the dimensionality without losing excessive information. By employing the proposed temporal convolutional architecture with spatial pooling, raw input fMRI data is mapped to a non-linear, highly-expressive and low-dimensional feature space where the final classification is conducted. In addition, we propose a simple heuristic approach for hyper-parameter tuning when no validation data is available. Proposed method is tested on a ten class recognition memory experiment with nine subjects. The results support the efficiency and potential of the proposed model, compared to the baseline multi-voxel pattern analysis techniques.
Human Activity Recognition (HAR) is considered a valuable research topic in the last few decades. Different types of machine learning models are used for this purpose, and this is a part of analyzing human behavior through machines. It is not a trivial task to analyze the data from wearable sensors for complex and high dimensions. Nowadays, researchers mostly use smartphones or smart home sensors to capture these data. In our paper, we analyze these data using machine learning models to recognize human activities, which are now widely used for many purposes such as physical and mental health monitoring. We apply different machine learning models and compare performances. We use Logistic Regression (LR) as the benchmark model for its simplicity and excellent performance on a dataset, and to compare, we take Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). Additionally, we select the best set of parameters for each model by grid search. We use the HAR dataset from the UCI Machine Learning Repository as a standard dataset to train and test the models. Throughout the analysis, we can see that the Support Vector Machine performed (average accuracy 96.33%) far better than the other methods. We also prove that the results are statistically significant by employing statistical significance test methods.
In this work we explore a new approach for robots to teach themselves about the world simply by observing it. In particular we investigate the effectiveness of learning task-agnostic representations for continuous control tasks. We extend Time-Contrastive Networks (TCN) that learn from visual observations by embedding multiple frames jointly in the embedding space as opposed to a single frame. We show that by doing so, we are now able to encode both position and velocity attributes significantly more accurately. We test the usefulness of this self-supervised approach in a reinforcement learning setting. We show that the representations learned by agents observing themselves take random actions, or other agents perform tasks successfully, can enable the learning of continuous control policies using algorithms like Proximal Policy Optimization (PPO) using only the learned embeddings as input. We also demonstrate significant improvements on the real-world Pouring dataset with a relative error reduction of 39.4% for motion attributes and 11.1% for static attributes compared to the single-frame baseline. Video results are available at https://sites.google.com/view/actionablerepresentations .

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا