Do you want to publish a course? Click here

Sharing deep generative representation for perceived image reconstruction from human brain activity

81   0   0.0 ( 0 )
 Added by Huiguang He
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Decoding human brain activities via functional magnetic resonance imaging (fMRI) has gained increasing attention in recent years. While encouraging results have been reported in brain states classification tasks, reconstructing the details of human visual experience still remains difficult. Two main challenges that hinder the development of effective models are the perplexing fMRI measurement noise and the high dimensionality of limited data instances. Existing methods generally suffer from one or both of these issues and yield dissatisfactory results. In this paper, we tackle this problem by casting the reconstruction of visual stimulus as the Bayesian inference of missing view in a multiview latent variable model. Sharing a common latent representation, our joint generative model of external stimulus and brain response is not only deep in extracting nonlinear features from visual images, but also powerful in capturing correlations among voxel activities of fMRI recordings. The nonlinearity and deep structure endow our model with strong representation ability, while the correlations of voxel activities are critical for suppressing noise and improving prediction. We devise an efficient variational Bayesian method to infer the latent variables and the model parameters. To further improve the reconstruction accuracy, the latent representations of testing instances are enforced to be close to that of their neighbours from the training set via posterior regularization. Experiments on three fMRI recording datasets demonstrate that our approach can more accurately reconstruct visual stimuli.



rate research

Read More

Among the most impressive recent applications of neural decoding is the visual representation decoding, where the category of an object that a subject either sees or imagines is inferred by observing his/her brain activity. Even though there is an increasing interest in the aforementioned visual representation decoding task, there is no extensive study of the effect of using different machine learning models on the decoding accuracy. In this paper we provide an extensive evaluation of several machine learning models, along with different similarity metrics, for the aforementioned task, drawing many interesting conclusions. That way, this paper a) paves the way for developing more advanced and accurate methods and b) provides an extensive and easily reproducible baseline for the aforementioned decoding task.
77 - Luca Surace 2021
Foveated image reconstruction recovers full image from a sparse set of samples distributed according to the human visual systems retinal sensitivity that rapidly drops with eccentricity. Recently, the use of Generative Adversarial Networks was shown to be a promising solution for such a task as they can successfully hallucinate missing image information. Like for other supervised learning approaches, also for this one, the definition of the loss function and training strategy heavily influences the output quality. In this work, we pose the question of how to efficiently guide the training of foveated reconstruction techniques such that they are fully aware of the human visual systems capabilities and limitations, and therefore, reconstruct visually important image features. Due to the nature of GAN-based solutions, we concentrate on the humans sensitivity to hallucination for different input sample densities. We present new psychophysical experiments, a dataset, and a procedure for training foveated image reconstruction. The strategy provides flexibility to the generator network by penalizing only perceptually important deviations in the output. As a result, the method aims to preserve perceived image statistics rather than natural image statistics. We evaluate our strategy and compare it to alternative solutions using a newly trained objective metric and user experiments.
65 - Steve DiPaola , Liane Gabora , 2018
The common view that our creativity is what makes us uniquely human suggests that incorporating research on human creativity into generative deep learning techniques might be a fruitful avenue for making their outputs more compelling and human-like. Using an original synthesis of Deep Dream-based convolutional neural networks and cognitive based computational art rendering systems, we show how honing theory, intrinsic motivation, and the notion of a seed incident can be implemented computationally, and demonstrate their impact on the resulting generative art. Conversely, we discuss how explorations in deep learn-ing convolutional neural net generative systems can inform our understanding of human creativity. We conclude with ideas for further cross-fertilization between AI based computational creativity and psychology of creativity.
139 - G. Ruffini , C. Ray , J. Marco 2005
We analyze the complex networks associated with brain electrical activity. Multichannel EEG measurements are first processed to obtain 3D voxel activations using the tomographic algorithm LORETA. Then, the correlation of the current intensity activation between voxel pairs is computed to produce a voxel cross-correlation coefficient matrix. Using several correlation thresholds, the cross-correlation matrix is then transformed into a network connectivity matrix and analyzed. To study a specific example, we selected data from an earlier experiment focusing on the MMN brain wave. The resulting analysis highlights significant differences between the spatial activations associated with Standard and Deviant tones, with interesting physiological implications. When compared to random data networks, physiological networks are more connected, with longer links and shorter path lengths. Furthermore, as compared to the Deviant case, Standard data networks are more connected, with longer links and shorter path lengths--i.e., with a stronger ``small worlds character. The comparison between both networks shows that areas known to be activated in the MMN wave are connected. In particular, the analysis supports the idea that supra-temporal and inferior frontal data work together in the processing of the differences between sounds by highlighting an increased connectivity in the response to a novel sound.
Machine learning models are commonly trained end-to-end and in a supervised setting, using paired (input, output) data. Examples include recent super-resolution methods that train on pairs of (low-resolution, high-resolution) images. However, these end-to-end approaches require re-training every time there is a distribution shift in the inputs (e.g., night images vs daylight) or relevant latent variables (e.g., camera blur or hand motion). In this work, we leverage state-of-the-art (SOTA) generative models (here StyleGAN2) for building powerful image priors, which enable application of Bayes theorem for many downstream reconstruction tasks. Our method, Bayesian Reconstruction through Generative Models (BRGM), uses a single pre-trained generator model to solve different image restoration tasks, i.e., super-resolution and in-painting, by combining it with different forward corruption models. We keep the weights of the generator model fixed, and reconstruct the image by estimating the Bayesian maximum a-posteriori (MAP) estimate over the input latent vector that generated the reconstructed image. We further use variational inference to approximate the posterior distribution over the latent vectors, from which we sample multiple solutions. We demonstrate BRGM on three large and diverse datasets: (i) 60,000 images from the Flick Faces High Quality dataset (ii) 240,000 chest X-rays from MIMIC III and (iii) a combined collection of 5 brain MRI datasets with 7,329 scans. Across all three datasets and without any dataset-specific hyperparameter tuning, our simple approach yields performance competitive with current task-specific state-of-the-art methods on super-resolution and in-painting, while being more generalisable and without requiring any training. Our source code and pre-trained models are available online: https://razvanmarinescu.github.io/brgm/.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا