No Arabic abstract
Simulations of elastoinertial turbulence (EIT) of a polymer solution at low Reynolds number are shown to display localized polymer stretch fluctuations. These are very similar to structures arising from linear stability (Tollmien-Schlichting (TS) modes) and resolvent analyses: i.e., critical-layer structures localized where the mean fluid velocity equals the wavespeed. Computation of self-sustained nonlinear TS waves reveals that the critical layer exhibits stagnation points that generate sheets of large polymer stretch. These kinematics may be the genesis of similar structures in EIT.
Direct simulations of two-dimensional channel flow of a viscoelastic fluid have revealed the existence of a family of Tollmien-Schlichting (TS) attractors that is nonlinearly self-sustained by viscoelasticity [Shekar et al., J.Fluid Mech. 893, A3 (2020)]. Here, we describe the evolution of this branch in parameter space and its connections to the Newtonian TS attractor and to elastoinertial turbulence (EIT). At Reynolds number $Re=3000$, there is a solution branch with TS-wave structure but which is not connected to the Newtonian solution branch. At fixed Weissenberg number, $Wi$ and increasing Reynolds number from 3000-10000, this attractor goes from displaying a striation of weak polymer stretch localized at the critical layer to an extended sheet of very large polymer stretch. We show that this transition is directly tied to the strength of the TS critical layer fluctuations and can be attributed to a coil-stretch transition when the local Weissenberg number at the hyperbolic stagnation point of the Kelvin cats eye structure of the TS wave exceeds $frac{1}{2}$. At $Re=10000$, unlike $3000$, the Newtonian TS attractor evolves continuously into the EIT state as $Wi$ is increased from zero to about $13$. We describe how the structure of the flow and stress fields changes, highlighting in particular a sheet-shedding process by which the individual sheets associated with the critical layer structure break up to form the layered multisheet structure characteristic of EIT.
It is commonly accepted that the breakup criteria of drops or bubbles in turbulence is governed by surface tension and inertia. However, also {it{buoyancy}} can play an important role at breakup. In order to better understand this role, here we numerically study Rayleigh-Benard convection for two immiscible fluid layers, in order to identify the effects of buoyancy on interface breakup. We explore the parameter space spanned by the Weber number $5leq We leq 5000$ (the ratio of inertia to surface tension) and the density ratio between the two fluids $0.001 leq Lambda leq 1$, at fixed Rayleigh number $Ra=10^8$ and Prandtl number $Pr=1$. At low $We$, the interface undulates due to plumes. When $We$ is larger than a critical value, the interface eventually breaks up. Depending on $Lambda$, two breakup types are observed: The first type occurs at small $Lambda ll 1$ (e.g. air-water systems) when local filament thicknesses exceed the Hinze length scale. The second, strikingly different, type occurs at large $Lambda$ with roughly $0.5 < Lambda le 1$ (e.g. oil-water systems): The layers undergo a periodic overturning caused by buoyancy overwhelming surface tension. For both types the breakup criteria can be derived from force balance arguments and show good agreement with the numerical results.
Despite the nonlinear nature of turbulence, there is evidence that part of the energy-transfer mechanisms sustaining wall turbulence can be ascribed to linear processes. The different scenarios stem from linear stability theory and comprise exponential instabilities, neutral modes, transient growth from non-normal operators, and parametric instabilities from temporal mean-flow variations, among others. These mechanisms, each potentially capable of leading to the observed turbulence structure, are rooted in theoretical and conceptual arguments. Whether the flow follows any or a combination of them remains elusive. Here, we evaluate the linear mechanisms responsible for the energy transfer from the streamwise-averaged mean-flow ($bf U$) to the fluctuating velocities ($bf u$). We use cause-and-effect analysis based on interventions. This is achieved by direct numerical simulation of turbulent channel flows at low Reynolds number, in which the energy transfer from $bf U$ to $bf u$ is constrained to preclude a targeted linear mechanism. We show that transient growth is sufficient for sustaining realistic wall turbulence. Self-sustaining turbulence persists when exponential instabilities, neutral modes, and parametric instabilities of the mean flow are suppressed. We further show that a key component of transient growth is the Orr/push-over mechanism induced by spanwise variations of the base flow. Finally, we demonstrate that an ensemble of simulations with various frozen-in-time $bf U$ arranged so that only transient growth is active, can faithfully represent the energy transfer from $bf U$ to $bf u$ as in realistic turbulence. Our approach provides direct cause-and-effect evaluation of the linear energy-injection mechanisms from $bf U$ to $bf u$ in the fully nonlinear system and simplifies the conceptual model of self-sustaining wall turbulence.
The role of the spatial structure of a turbulent flow in enhancing particle collision rates in suspensions is an open question. We show and quantify, as a function of particle inertia, the correlation between the multiscale structures of turbulence and particle collisions: Straining zones contribute predominantly to rapid head-on collisions compared to vortical regions. We also discover the importance of vortex-strain worm-rolls, which goes beyond ideas of preferential concentration and may explain the rapid growth of aggregates in natural processes, such as the initiation of rain in warm clouds.
Direct simulations of two-dimensional plane channel flow of a viscoelastic fluid at Reynolds number Re = 3000 reveal the existence of a family of attractors whose structure closely resembles the linear Tollmien-Schlichting (TS) mode, and in particular exhibits strongly localized stress fluctuations at the critical layer position of the TS mode. At the parameter values chosen, this solution branch is not connected to the nonlinear TS solution branch found for Newtonian flow, and thus represents a solution family that is nonlinearly self-sustained by viscoelasticity. The ratio between stress and velocity fluctuations is in quantitative agreement for the attractor and the linear TS mode, and increases strongly with Weissenberg number, Wi. For the latter, there is a transition in the scaling of this ratio as Wi increases, and the Wi at which the nonlinear solution family comes into existence is just above this transition. Finally, evidence indicates that this branch is connected through an unstable solution branch to two-dimensional elastoinertial turbulence (EIT). These results suggest that, in the parameter range considered here, the bypass transition leading to EIT is mediated by nonlinear amplification and self-sustenance of perturbations that excite the Tollmien-Schlichting mode.