Do you want to publish a course? Click here

Tollmien-Schlichting route to elastoinertial turbulence in channel flow

96   0   0.0 ( 0 )
 Added by Michael D. Graham
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Direct simulations of two-dimensional channel flow of a viscoelastic fluid have revealed the existence of a family of Tollmien-Schlichting (TS) attractors that is nonlinearly self-sustained by viscoelasticity [Shekar et al., J.Fluid Mech. 893, A3 (2020)]. Here, we describe the evolution of this branch in parameter space and its connections to the Newtonian TS attractor and to elastoinertial turbulence (EIT). At Reynolds number $Re=3000$, there is a solution branch with TS-wave structure but which is not connected to the Newtonian solution branch. At fixed Weissenberg number, $Wi$ and increasing Reynolds number from 3000-10000, this attractor goes from displaying a striation of weak polymer stretch localized at the critical layer to an extended sheet of very large polymer stretch. We show that this transition is directly tied to the strength of the TS critical layer fluctuations and can be attributed to a coil-stretch transition when the local Weissenberg number at the hyperbolic stagnation point of the Kelvin cats eye structure of the TS wave exceeds $frac{1}{2}$. At $Re=10000$, unlike $3000$, the Newtonian TS attractor evolves continuously into the EIT state as $Wi$ is increased from zero to about $13$. We describe how the structure of the flow and stress fields changes, highlighting in particular a sheet-shedding process by which the individual sheets associated with the critical layer structure break up to form the layered multisheet structure characteristic of EIT.



rate research

Read More

Direct simulations of two-dimensional plane channel flow of a viscoelastic fluid at Reynolds number Re = 3000 reveal the existence of a family of attractors whose structure closely resembles the linear Tollmien-Schlichting (TS) mode, and in particular exhibits strongly localized stress fluctuations at the critical layer position of the TS mode. At the parameter values chosen, this solution branch is not connected to the nonlinear TS solution branch found for Newtonian flow, and thus represents a solution family that is nonlinearly self-sustained by viscoelasticity. The ratio between stress and velocity fluctuations is in quantitative agreement for the attractor and the linear TS mode, and increases strongly with Weissenberg number, Wi. For the latter, there is a transition in the scaling of this ratio as Wi increases, and the Wi at which the nonlinear solution family comes into existence is just above this transition. Finally, evidence indicates that this branch is connected through an unstable solution branch to two-dimensional elastoinertial turbulence (EIT). These results suggest that, in the parameter range considered here, the bypass transition leading to EIT is mediated by nonlinear amplification and self-sustenance of perturbations that excite the Tollmien-Schlichting mode.
Simulations of elastoinertial turbulence (EIT) of a polymer solution at low Reynolds number are shown to display localized polymer stretch fluctuations. These are very similar to structures arising from linear stability (Tollmien-Schlichting (TS) modes) and resolvent analyses: i.e., critical-layer structures localized where the mean fluid velocity equals the wavespeed. Computation of self-sustained nonlinear TS waves reveals that the critical layer exhibits stagnation points that generate sheets of large polymer stretch. These kinematics may be the genesis of similar structures in EIT.
We study the effect of particle shape on the turbulence in suspensions of spheroidal particles at volume fraction $phi = 10%$ and show how the near-wall particle dynamics deeply changes with the particle aspect ratio and how this affects the global suspension behavior. The turbulence reduces with the aspect ratio of oblate particles, leading to drag reduction with respect to the single phase flow for particles with aspect ratio $mathcal{AR}leq1/3$, when the significant reduction in Reynolds shear stress is more than the compensation by the additional stresses, induced by the solid phase. Oblate particles are found to avoid the region close to the wall, travelling parallel to it with small angular velocities, while preferentially sampling high-speed fluid in the wall region. Prolate particles, also tend to orient parallel to the wall and avoid its vicinity. Their reluctancy to rotate around spanwise axis reduce the wall-normal velocity fluctuation of the flow and therefore the turbulence Reynolds stress similar to oblates; however, they undergo rotations in wall-parallel planes which increases the additional solid stresses due to their relatively larger angular velocities compared to the oblates. These larger additional stresses compensates for the reduction in turbulence activity and leads to a wall-drag similar to that of single-phase flows. Spheres on the other hand, form a layer close to the wall with large angular velocities in spanwise direction, which increases the turbulence activity in addition to exerting the largest solid stresses on the suspension, in comparison to the other studied shapes. Spherical particles therefore increase the wall-drag with respect to the single-phase flow.
Previous studies on nonspherical particle-fluid interaction were mostly confined to elongated fiber-like particles, which were observed to induce turbulence drag reduction. However, with the presence of tiny disk-like particles how wall turbulence is modulated and whether drag reduction occurs are still unknown. Motivated by those open questions, we performed two-way coupled direct numerical simulations of inertialess spheroids in turbulent channel flow by an Eulerian-Lagrangian approach. The additional stress accounts for the feedback from inertialess spheroids on the fluid phase. The results demonstrate that both rigid elongated fibers (prolate spheroids) and thin disks (oblate spheroids) can lead to significant turbulence modulations and drag reduction. However, the disk-induced drag reduction is less pronounced than that of rigid fibers with the same volume fraction. Typical features of drag-reduced flows by additives are observed in both flow statistics and turbulence coherent structures. Moreover, in contrast to one-way simulations, the two-way coupled results of spheroidal particles exhibit stronger preferential alignments and lower rotation rates. At the end we propose a drag reduction mechanism by inertialess spheroids and explain the different performance for drag reduction by fibers and disks. We find that the spheroidal particles weaken the quasistreamwise vortices through negative work and, therefore, the Reynolds shear stress is reduced. However, the mean shear stress generated by particles, which is shape-dependent, partly compensates for the reduction of Reynolds shear stress and thus affects the efficiency of drag reduction. The present study implies that tiny disk-like particles can be an alternative drag reduction agent in wall turbulence.
122 - J. Kuhnen , B. Song , D. Scarselli 2017
Turbulence is the major cause of friction losses in transport processes and it is responsible for a drastic drag increase in flows over bounding surfaces. While much effort is invested into developing ways to control and reduce turbulence intensities, so far no methods exist to altogether eliminate turbulence if velocities are sufficiently large. We demonstrate for pipe flow that appropriate distortions to the velocity profile lead to a complete collapse of turbulence and subsequently friction losses are reduced by as much as 95%. Counterintuitively, the return to laminar motion is accomplished by initially increasing turbulence intensities or by transiently amplifying wall shear. The usual measures of turbulence levels, such as the Reynolds number (Re) or shear stresses, do not account for the subsequent relaminarization. Instead an amplification mechanism measuring the interaction between eddies and the mean shear is found to set a threshold below which turbulence is suppressed beyond recovery.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا