We report about the design and the initial performances of the pathfinder mission for a possible large scale neutrino telescope named STRings for Absorption length in Water (STRAW). In June 2018 STRAW has been deployed at the Cascadia Basin site operated by Ocean Network Canada and has been collecting data since then. At a depth of about 2600 meters, the two STRAW 120 meters tall mooring lines are instrumented by three Precision Optical Calibration Modules (POCAM) and five Digital Optical Sensors (sDOM). We describe the instrumentation deployed and first light in the Pacific Ocean.
The Pacific Ocean Neutrino Experiment (P-ONE) is a new initiative with a vision towards constructing a multi-cubic kilometre neutrino telescope, to expand our observable window of the Universe to highest energies, installed within the deep Pacific Ocean underwater infrastructure of Ocean Networks Canada.
Muons created by $ u_mu$ charged current (CC) interactions in the water surrounding the ANTARES neutrino telescope have been almost exclusively used so far in searches for cosmic neutrino sources. Due to their long range, highly energetic muons inducing Cherenkov radiation in the water are reconstructed with dedicated algorithms that allow the determination of the parent neutrino direction with a median angular resolution of about unit{0.4}{degree} for an $E^{-2}$ neutrino spectrum. In this paper, an algorithm optimised for accurate reconstruction of energy and direction of shower events in the ANTARES detector is presented. Hadronic showers of electrically charged particles are produced by the disintegration of the nucleus both in CC and neutral current (NC) interactions of neutrinos in water. In addition, electromagnetic showers result from the CC interactions of electron neutrinos while the decay of a tau lepton produced in $ u_tau$ CC interactions will in most cases lead to either a hadronic or an electromagnetic shower. A shower can be approximated as a point source of photons. With the presented method, the shower position is reconstructed with a precision of about unit{1}{metre}, the neutrino direction is reconstructed with a median angular resolution between unit{2}{degree} and unit{3}{degree} in the energy range of SIrange{1}{1000}{TeV}. In this energy interval, the uncertainty on the reconstructed neutrino energy is about SIrange{5}{10}{%}. The increase in the detector sensitivity due to the use of additional information from shower events in the searches for a cosmic neutrino flux is also presented.
The STRings for Absorption length in Water (STRAW) experiment is the first in a series of pathfinder missions for the Pacific Ocean Neutrino Experiment (P-ONE), a future large-scale neutrino telescope in the north-eastern Pacific Ocean. STRAW consists of two 150 m long mooring lines instrumented with optical emitters and detectors. The experiment is designed to measure the attenuation length of the water and perform a long-term assessment of the optical background at the future P-ONE site. After two years of continuous operation, measurements from STRAW show an optical attenuation length of about 28 metres at 450 nm. Additionally, the data allows a study of the ambient undersea background. The overall optical environment reported here is comparable to other deep-water neutrino telescopes and qualifies the site for the deployment of P-ONE.
The Radar Echo Telescope for Cosmic Rays (RET-CR) is a recently initiated experiment designed to detect the englacial cascade of a cosmic-ray initiated air shower via in-ice radar, toward the goal of a full-scale, next-generation experiment to detect ultra high energy neutrinos in polar ice. For cosmic rays with a primary energy greater than 10 PeV, roughly 10% of an air-showers energy reaches the surface of a high elevation ice-sheet ($gtrsim$2 km) concentrated into a radius of roughly 10 cm. This penetrating shower core creates an in-ice cascade many orders of magnitude more dense than the preceding in-air cascade. This dense cascade can be detected via the radar echo technique, where transmitted radio is reflected from the ionization deposit left in the wake of the cascade. RET-CR will test the radar echo method in nature, with the in-ice cascade of a cosmic-ray initiated air-shower serving as a test beam. We present the projected event rate and sensitivity based upon a three part simulation using CORSIKA, GEANT4, and RadioScatter. RET-CR expects $sim$1 radar echo event per day.
The Baikal-GVD is a neutrino telescope under construction in Lake Baikal. The main goal of the Baikal-GVD is to observe neutrinos via detecting the Cherenkov radiation of the secondary charged particles originating in the interactions of neutrinos. In 2021, the installation works concluded with 2304 optical modules installed in the lake resulting in effective volume approximately 0.4 km$^{3}$. In this paper, the first steps in the development of double cascade reconstruction techniques are presented.
M. Boehmer
,J. Bosma
,D. Brussow
.
(2018)
.
"STRAW (STRings for Absorption length in Water): pathfinder for a neutrino telescope in the deep Pacific Ocean"
.
Felix Henningsen
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا