Do you want to publish a course? Click here

Development of the Double Cascade Reconstruction Techniques in the Baikal-GVD Neutrino Telescope

80   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Baikal-GVD is a neutrino telescope under construction in Lake Baikal. The main goal of the Baikal-GVD is to observe neutrinos via detecting the Cherenkov radiation of the secondary charged particles originating in the interactions of neutrinos. In 2021, the installation works concluded with 2304 optical modules installed in the lake resulting in effective volume approximately 0.4 km$^{3}$. In this paper, the first steps in the development of double cascade reconstruction techniques are presented.



rate research

Read More

The large-scale deep underwater Cherenkov neutrino telescopes like Baikal-GVD, ANTARES or KM3NeT, require calibration and testing methods of their optical modules. These methods usually include laser-based systems which allow to check the telescope responses to the light and for real-time monitoring of the optical parameters of water such as absorption and scattering lengths, which show seasonal changes in natural reservoirs of water. We will present a testing method of a laser calibration system and a set of dedicated tools developed for Baikal- GVD, which includes a specially designed and built, compact, portable, and reconfigurable scanning station. This station is adapted to perform fast quality tests of the underwater laser sets just before their deployment in the telescope structure, even on ice, without darkroom. The testing procedure includes the energy stability test of the laser device, 3D scan of the light emission from the diffuser and attenuation test of the optical elements of the laser calibration system. The test bench consists primarily of an automatic mechanical scanner with a movable Si detector, beam splitter with a reference Si detector and, optionally, Q-switched diode-pumped solid-state laser used for laboratory scans of the diffusers. The presented test bench enables a three-dimensional scan of the light emission from diffusers, which are designed to obtain the isotropic distribution of photons around the point of emission. The results of the measurement can be easily shown on a 3D plot immediately after the test and may be also implemented to a dedicated program simulating photons propagation in water, which allows to check the quality of the diffuser in the scale of the Baikal-GVD telescope geometry.
Baikal-GVD is a kilometer scale neutrino telescope currently under construction in Lake Baikal. Due to water currents in Lake Baikal, individual photomultiplier housings are mobile and can drift away from their initial position. In order to accurately determine the coordinates of the photomultipliers, the telescope is equipped with an acoustic positioning system. The system consists of a network of acoustic modems, installed along the telescope strings and uses acoustic trilateration to determine the coordinates of individual modems. This contribution discusses the current state of the positioning in Baikal-GVD, including the recent upgrade to the acoustic modem polling algorithm.
Baikal-GVD is a km$^3$-scale neutrino telescope being constructed in Lake Baikal. Muon and partially tau (anti)neutrino interactions near the detector through the W$^{pm}$-boson exchange are accompanied by muon tracks. Reconstructed direction of the track is arguably the most precise probe of the neutrino direction attainable in Cerenkov neutrino telescopes. Muon reconstruction techniques adopted by Baikal-GVD are discussed in the present report. Performance of the muon reconstruction is studied using realistic Monte Carlo simulation of the detector. The algorithms are applied to real data from Baikal-GVD and the results are compared with simulations. The performance of the neutrino selection based on a boosted decision tree classifier is discussed.
128 - Dmitry Zaborov 2020
Neutrino astronomy offers a novel view of the non-thermal Universe and is complementary to other astronomical disciplines. The field has seen rapid progress in recent years, including the first detection of astrophysical neutrinos in the TeV-PeV energy range by IceCube and the first identified extragalactic neutrino source (TXS 0506+056). Further discoveries are aimed for with new cubic-kilometer telescopes in the Northern Hemisphere: Baikal-GVD, in Lake Baikal, and KM3NeT-ARCA, in the Mediterranean sea. The construction of Baikal-GVD proceeds as planned; the detector currently includes over 2000 optical modules arranged on 56 strings, providing an effective volume of 0.35 km$^3$. We review the scientific case for Baikal-GVD, the construction plan, and first results from the partially built array.
Muons created by $ u_mu$ charged current (CC) interactions in the water surrounding the ANTARES neutrino telescope have been almost exclusively used so far in searches for cosmic neutrino sources. Due to their long range, highly energetic muons inducing Cherenkov radiation in the water are reconstructed with dedicated algorithms that allow the determination of the parent neutrino direction with a median angular resolution of about unit{0.4}{degree} for an $E^{-2}$ neutrino spectrum. In this paper, an algorithm optimised for accurate reconstruction of energy and direction of shower events in the ANTARES detector is presented. Hadronic showers of electrically charged particles are produced by the disintegration of the nucleus both in CC and neutral current (NC) interactions of neutrinos in water. In addition, electromagnetic showers result from the CC interactions of electron neutrinos while the decay of a tau lepton produced in $ u_tau$ CC interactions will in most cases lead to either a hadronic or an electromagnetic shower. A shower can be approximated as a point source of photons. With the presented method, the shower position is reconstructed with a precision of about unit{1}{metre}, the neutrino direction is reconstructed with a median angular resolution between unit{2}{degree} and unit{3}{degree} in the energy range of SIrange{1}{1000}{TeV}. In this energy interval, the uncertainty on the reconstructed neutrino energy is about SIrange{5}{10}{%}. The increase in the detector sensitivity due to the use of additional information from shower events in the searches for a cosmic neutrino flux is also presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا