No Arabic abstract
We advocate Laplacian K-modes for joint clustering and density mode finding, and propose a concave-convex relaxation of the problem, which yields a parallel algorithm that scales up to large datasets and high dimensions. We optimize a tight bound (auxiliary function) of our relaxation, which, at each iteration, amounts to computing an independent update for each cluster-assignment variable, with guaranteed convergence. Therefore, our bound optimizer can be trivially distributed for large-scale data sets. Furthermore, we show that the density modes can be obtained as byproducts of the assignment variables via simple maximum-value operations whose additional computational cost is linear in the number of data points. Our formulation does not need storing a full affinity matrix and computing its eigenvalue decomposition, neither does it perform expensive projection steps and Lagrangian-dual inner iterates for the simplex constraints of each point. Furthermore, unlike mean-shift, our density-mode estimation does not require inner-loop gradient-ascent iterates. It has a complexity independent of feature-space dimension, yields modes that are valid data points in the input set and is applicable to discrete domains as well as arbitrary kernels. We report comprehensive experiments over various data sets, which show that our algorithm yields very competitive performances in term of optimization quality (i.e., the value of the discrete-variable objective at convergence) and clustering accuracy.
We propose a transductive Laplacian-regularized inference for few-shot tasks. Given any feature embedding learned from the base classes, we minimize a quadratic binary-assignment function containing two terms: (1) a unary term assigning query samples to the nearest class prototype, and (2) a pairwise Laplacian term encouraging nearby query samples to have consistent label assignments. Our transductive inference does not re-train the base model, and can be viewed as a graph clustering of the query set, subject to supervision constraints from the support set. We derive a computationally efficient bound optimizer of a relaxation of our function, which computes independent (parallel) updates for each query sample, while guaranteeing convergence. Following a simple cross-entropy training on the base classes, and without complex meta-learning strategies, we conducted comprehensive experiments over five few-shot learning benchmarks. Our LaplacianShot consistently outperforms state-of-the-art methods by significant margins across different models, settings, and data sets. Furthermore, our transductive inference is very fast, with computational times that are close to inductive inference, and can be used for large-scale few-shot tasks.
Transfer of pre-trained representations can improve sample efficiency and reduce computational requirements for new tasks. However, representations used for transfer are usually generic, and are not tailored to a particular distribution of downstream tasks. We explore the use of expert representations for transfer with a simple, yet effective, strategy. We train a diverse set of experts by exploiting existing label structures, and use cheap-to-compute performance proxies to select the relevant expert for each target task. This strategy scales the process of transferring to new tasks, since it does not revisit the pre-training data during transfer. Accordingly, it requires little extra compute per target task, and results in a speed-up of 2-3 orders of magnitude compared to competing approaches. Further, we provide an adapter-based architecture able to compress many experts into a single model. We evaluate our approach on two different data sources and demonstrate that it outperforms baselines on over 20 diverse vision tasks in both cases.
We describe a simple and general neural network weight compression approach, in which the network parameters (weights and biases) are represented in a latent space, amounting to a reparameterization. This space is equipped with a learned probability model, which is used to impose an entropy penalty on the parameter representation during training, and to compress the representation using a simple arithmetic coder after training. Classification accuracy and model compressibility is maximized jointly, with the bitrate--accuracy trade-off specified by a hyperparameter. We evaluate the method on the MNIST, CIFAR-10 and ImageNet classification benchmarks using six distinct model architectures. Our results show that state-of-the-art model compression can be achieved in a scalable and general way without requiring complex procedures such as multi-stage training.
A promising class of generative models maps points from a simple distribution to a complex distribution through an invertible neural network. Likelihood-based training of these models requires restricting their architectures to allow cheap computation of Jacobian determinants. Alternatively, the Jacobian trace can be used if the transformation is specified by an ordinary differential equation. In this paper, we use Hutchinsons trace estimator to give a scalable unbiased estimate of the log-density. The result is a continuous-time invertible generative model with unbiased density estimation and one-pass sampling, while allowing unrestricted neural network architectures. We demonstrate our approach on high-dimensional density estimation, image generation, and variational inference, achieving the state-of-the-art among exact likelihood methods with efficient sampling.
Generative adversarial networks (GANs) often suffer from unpredictable mode-collapsing during training. We study the issue of mode collapse of Boundary Equilibrium Generative Adversarial Network (BEGAN), which is one of the state-of-the-art generative models. Despite its potential of generating high-quality images, we find that BEGAN tends to collapse at some modes after a period of training. We propose a new model, called emph{BEGAN with a Constrained Space} (BEGAN-CS), which includes a latent-space constraint in the loss function. We show that BEGAN-CS can significantly improve training stability and suppress mode collapse without either increasing the model complexity or degrading the image quality. Further, we visualize the distribution of latent vectors to elucidate the effect of latent-space constraint. The experimental results show that our method has additional advantages of being able to train on small datasets and to generate images similar to a given real image yet with variations of designated attributes on-the-fly.