Do you want to publish a course? Click here

Topological couplings in higher derivative extensions of supersymmetric three-form gauge theories

72   0   0.0 ( 0 )
 Added by Ryo Yokokura
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We consider a topological coupling between a pseudo-scalar field and a 3-form gauge field in ${cal N}=1$ supersymmetric higher derivative 3-form gauge theories in four spacetime dimensions. We show that ghost/tachyon-free higher derivative Lagrangians with the topological coupling can generate various potentials for the pseudo-scalar field by solving the equation of motion for the 3-form gauge field. We give two examples of higher derivative Lagrangians and the corresponding potentials: one is a quartic order term of the field strength and the other is the term which can generate a cosine-type potential of the pseudo-scalar field.



rate research

Read More

We develop geometric superspace settings to construct arbitrary higher derivative couplings (including R^n terms) in three-dimensional supergravity theories with N=1,2,3 by realising them as conformal supergravity coupled to certain compensators. For all known off-shell supergravity formulations, we construct supersymmetric invariants with up to and including four derivatives. As a warming-up exercise, we first give a new and completely geometric derivation of such invariants in N=1 supergravity. Upon reduction to components, they agree with those given in arXiv:0907.4658 and arXiv:1005.3952. We then carry out a similar construction in the case of N=2 supergravity for which there exist two minimal formulations that differ by the choice of compensating multiplet: (i) a chiral scalar multipet; (ii) a vector multiplet. For these formulations all four derivative invariants are constructed in completely general and gauge independent form. For a general supergravity model (in the N=1 and minimal N=2 cases) with curvature-squared and lower order terms, we derive the superfield equations of motion, linearise them about maximally supersymmetric backgrounds and obtain restrictions on the parameters that lead to models for massive supergravity. We use the non-minimal formulation for N = 2 supergravity (which corresponds to a complex linear compensator) to construct a novel consistent theory of massive supergravity. In the case of N = 3 supergravity, we employ the off-shell formulation with a vector multiplet as compensator to construct for the first time various higher derivative invariants. These invariants may be used to derive models for N = 3 massive supergravity. As a bi-product of our analysis, we also present superfield equations for massive higher spin multiplets in (1,0), (1,1) and (2,0) anti-de Sitter superspaces.
157 - Thomas Appelquist 1997
We compare gap equation predictions for the spontaneous breaking of global symmetries in supersymmetric Yang-Mills theory to nonperturbative results from holomorphic effective action techniques. In the theory without matter fields, both approaches describe the formation of a gluino condensate. With $N_f$ flavors of quark and squark fields, and with $N_f$ below a certain critical value, the coupled gap equations have a solution for quark and gluino condensate formation, corresponding to breaking of global symmetries and of supersymmetry. This appears to disagree with the newer nonperturbative techniques, but the reliability of gap equations in this context and whether the solution represents the ground state remain unclear.
We consider general aspects of N=2 gauge theories in three dimensions, including their multiplet structure, anomalies and non-renormalization theorems. For U(1) gauge theories, we discuss the quantum corrections to the moduli space, and their relation to ``mirror symmetries of 3d N=4 theories. Mirror symmetry is given an interpretation in terms of vortices. For SU(N_c) gauge groups with N_f fundamental flavors, we show that, depending on the number of flavors, there are quantum moduli spaces of vacua with various phenomena near the origin.
We study gravity duals to a broad class of N=2 supersymmetric gauge theories defined on a general class of three-manifold geometries. The gravity backgrounds are based on Euclidean self-dual solutions to four-dimensional gauged supergravity. As well as constructing new examples, we prove in general that for solutions defined on the four-ball the gravitational free energy depends only on the supersymmetric Killing vector, finding a simple closed formula when the solution has U(1) x U(1) symmetry. Our result agrees with the large N limit of the free energy of the dual gauge theory, computed using localization. This constitutes an exact check of the gauge/gravity correspondence for a very broad class of gauge theories with a large N limit, defined on a general class of background three-manifold geometries.
Invoking increasingly higher dimension operators to encode novel UV physics in effective gauge and gravity theories traditionally means working with increasingly more finicky and difficult expressions. We demonstrate that local higher derivative supersymmetric-compatible operators at four-points can be absorbed into simpler higher-derivative corrections to scalar theories, which generate the predictions of Yang-Mills and Gravity operators by suitable replacements of color-weights with color-dual kinematic weights as per Bern-Carrasco-Johansson double-copy. We exploit that Jacobi-satisfying representations can be composed out of other Jacobi-satisfying representations, and show that at four-points only a small number of building blocks are required to generate the predictions of higher-derivative operators. We find that this construction saturates the higher-derivative operators contributing to the four-point supersymmetric open and closed-string tree amplitudes, presenting a novel representation of the four-point supersymmetric open string making this structure manifest, as well as identifying the only four additional gauge-invariant building blocks required to saturate the four-point bosonic open string.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا