Do you want to publish a course? Click here

Simple encoding of higher derivative gauge and gravity counterterms

81   0   0.0 ( 0 )
 Added by Suna Zekioglu
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Invoking increasingly higher dimension operators to encode novel UV physics in effective gauge and gravity theories traditionally means working with increasingly more finicky and difficult expressions. We demonstrate that local higher derivative supersymmetric-compatible operators at four-points can be absorbed into simpler higher-derivative corrections to scalar theories, which generate the predictions of Yang-Mills and Gravity operators by suitable replacements of color-weights with color-dual kinematic weights as per Bern-Carrasco-Johansson double-copy. We exploit that Jacobi-satisfying representations can be composed out of other Jacobi-satisfying representations, and show that at four-points only a small number of building blocks are required to generate the predictions of higher-derivative operators. We find that this construction saturates the higher-derivative operators contributing to the four-point supersymmetric open and closed-string tree amplitudes, presenting a novel representation of the four-point supersymmetric open string making this structure manifest, as well as identifying the only four additional gauge-invariant building blocks required to saturate the four-point bosonic open string.



rate research

Read More

This is a continuation of our earlier work where we constructed a phenomenologically motivated effective action of the boundary gauge theory at finite temperature and finite gauge coupling on $S^3 times S^1$. In this paper, we argue that this effective action qualitatively reproduces the gauge theory representing various bulk phases of R-charged black hole with Gauss-Bonnet correction. We analyze the system both in canonical and grand canonical ensemble.
We consider a topological coupling between a pseudo-scalar field and a 3-form gauge field in ${cal N}=1$ supersymmetric higher derivative 3-form gauge theories in four spacetime dimensions. We show that ghost/tachyon-free higher derivative Lagrangians with the topological coupling can generate various potentials for the pseudo-scalar field by solving the equation of motion for the 3-form gauge field. We give two examples of higher derivative Lagrangians and the corresponding potentials: one is a quartic order term of the field strength and the other is the term which can generate a cosine-type potential of the pseudo-scalar field.
61 - W.F. Kao 2006
Stability analysis of the Kantowski-Sachs type universe in pure higher derivative gravity theory is studied in details. The non-redundant generalized Friedmann equation of the system is derived by introducing a reduced one dimensional generalized KS type action. This method greatly reduces the labor in deriving field equations of any complicate models. Existence and stability of inflationary solution in the presence of higher derivative terms are also studied in details. Implications to the choice of physical theories are discussed in details in this paper.
111 - W.F. Kao 2006
The existence and stability analysis of an inflationary solution in a $D+4$-dimensional anisotropic induced gravity is presented in this paper. Nontrivial conditions in the field equations are shown to be compatible with a cosmological model in which the 4-dimension external space evolves inflationary, while, the D-dimension internal one is static. In particular, only two additional constraints on the coupling constants are derived from the abundant field equations and perturbation equations. In addition, a compact formula for the non-redundant 4+D dimensional Friedmann equation is also derived for convenience. Possible implications are also discussed in this paper.
70 - W.F. Kao 2006
Existence and stability analysis of the Kantowski-Sachs type inflationary universe in a higher derivative scalar-tensor gravity theory is studied in details. Isotropic de Sitter background solution is shown to be stable against any anisotropic perturbation during the inflationary era. Stability of the de Sitter space in the post inflationary era can also be realized with proper choice of coupling constants.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا