Do you want to publish a course? Click here

An Adversarial Learning Approach to Medical Image Synthesis for Lesion Detection

78   0   0.0 ( 0 )
 Added by Xinghao Ding
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

The identification of lesion within medical image data is necessary for diagnosis, treatment and prognosis. Segmentation and classification approaches are mainly based on supervised learning with well-paired image-level or voxel-level labels. However, labeling the lesion in medical images is laborious requiring highly specialized knowledge. We propose a medical image synthesis model named abnormal-to-normal translation generative adversarial network (ANT-GAN) to generate a normal-looking medical image based on its abnormal-looking counterpart without the need for paired training data. Unlike typical GANs, whose aim is to generate realistic samples with variations, our more restrictive model aims at producing a normal-looking image corresponding to one containing lesions, and thus requires a special design. Being able to provide a normal counterpart to a medical image can provide useful side information for medical imaging tasks like lesion segmentation or classification validated by our experiments. In the other aspect, the ANT-GAN model is also capable of producing highly realistic lesion-containing image corresponding to the healthy one, which shows the potential in data augmentation verified in our experiments.



rate research

Read More

Generative Adversarial Networks (GANs) have the capability of synthesizing images, which have been successfully applied to medical image synthesis tasks. However, most of existing methods merely consider the global contextual information and ignore the fine foreground structures, e.g., vessel, skeleton, which may contain diagnostic indicators for medical image analysis. Inspired by human painting procedure, which is composed of stroking and color rendering steps, we propose a Sketching-rendering Unconditional Generative Adversarial Network (SkrGAN) to introduce a sketch prior constraint to guide the medical image generation. In our SkrGAN, a sketch guidance module is utilized to generate a high quality structural sketch from random noise, then a color render mapping is used to embed the sketch-based representations and resemble the background appearances. Experimental results show that the proposed SkrGAN achieves the state-of-the-art results in synthesizing images for various image modalities, including retinal color fundus, X-Ray, Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). In addition, we also show that the performances of medical image segmentation method have been improved by using our synthesized images as data augmentation.
Image-to-image translation models have shown remarkable ability on transferring images among different domains. Most of existing work follows the setting that the source domain and target domain keep the same at training and inference phases, which cannot be generalized to the scenarios for translating an image from an unseen domain to another unseen domain. In this work, we propose the Unsupervised Zero-Shot Image-to-image Translation (UZSIT) problem, which aims to learn a model that can translate samples from image domains that are not observed during training. Accordingly, we propose a framework called ZstGAN: By introducing an adversarial training scheme, ZstGAN learns to model each domain with domain-specific feature distribution that is semantically consistent on vision and attribute modalities. Then the domain-invariant features are disentangled with an shared encoder for image generation. We carry out extensive experiments on CUB and FLO datasets, and the results demonstrate the effectiveness of proposed method on UZSIT task. Moreover, ZstGAN shows significant accuracy improvements over state-of-the-art zero-shot learning methods on CUB and FLO.
428 - Dong Nie , Lei Xiang , Qian Wang 2019
Medical imaging plays a critical role in various clinical applications. However, due to multiple considerations such as cost and risk, the acquisition of certain image modalities could be limited. To address this issue, many cross-modality medical image synthesis methods have been proposed. However, the current methods cannot well model the hard-to-synthesis regions (e.g., tumor or lesion regions). To address this issue, we propose a simple but effective strategy, that is, we propose a dual-discriminator (dual-D) adversarial learning system, in which, a global-D is used to make an overall evaluation for the synthetic image, and a local-D is proposed to densely evaluate the local regions of the synthetic image. More importantly, we build an adversarial attention mechanism which targets at better modeling hard-to-synthesize regions (e.g., tumor or lesion regions) based on the local-D. Experimental results show the robustness and accuracy of our method in synthesizing fine-grained target images from the corresponding source images. In particular, we evaluate our method on two datasets, i.e., to address the tasks of generating T2 MRI from T1 MRI for the brain tumor images and generating MRI from CT. Our method outperforms the state-of-the-art methods under comparison in all datasets and tasks. And the proposed difficult-region-aware attention mechanism is also proved to be able to help generate more realistic images, especially for the hard-to-synthesize regions.
Image repurposing is a commonly used method for spreading misinformation on social media and online forums, which involves publishing untampered images with modified metadata to create rumors and further propaganda. While manual verification is possible, given vast amounts of verified knowledge available on the internet, the increasing prevalence and ease of this form of semantic manipulation call for the development of robust automatic ways of assessing the semantic integrity of multimedia data. In this paper, we present a novel method for image repurposing detection that is based on the real-world adversarial interplay between a bad actor who repurposes images with counterfeit metadata and a watchdog who verifies the semantic consistency between images and their accompanying metadata, where both players have access to a reference dataset of verified content, which they can use to achieve their goals. The proposed method exhibits state-of-the-art performance on location-identity, subject-identity and painting-artist verification, showing its efficacy across a diverse set of scenarios.
Deep learning has shown great promise for CT image reconstruction, in particular to enable low dose imaging and integrated diagnostics. These merits, however, stand at great odds with the low availability of diverse image data which are needed to train these neural networks. We propose to overcome this bottleneck via a deep reinforcement learning (DRL) approach that is integrated with a style-transfer (ST) methodology, where the DRL generates the anatomical shapes and the ST synthesizes the texture detail. We show that our method bears high promise for generating novel and anatomically accurate high resolution CT images at large and diverse quantities. Our approach is specifically designed to work with even small image datasets which is desirable given the often low amount of image data many researchers have available to them.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا