Do you want to publish a course? Click here

AIRD: Adversarial Learning Framework for Image Repurposing Detection

58   0   0.0 ( 0 )
 Added by Ayush Jaiswal
 Publication date 2019
and research's language is English




Ask ChatGPT about the research

Image repurposing is a commonly used method for spreading misinformation on social media and online forums, which involves publishing untampered images with modified metadata to create rumors and further propaganda. While manual verification is possible, given vast amounts of verified knowledge available on the internet, the increasing prevalence and ease of this form of semantic manipulation call for the development of robust automatic ways of assessing the semantic integrity of multimedia data. In this paper, we present a novel method for image repurposing detection that is based on the real-world adversarial interplay between a bad actor who repurposes images with counterfeit metadata and a watchdog who verifies the semantic consistency between images and their accompanying metadata, where both players have access to a reference dataset of verified content, which they can use to achieve their goals. The proposed method exhibits state-of-the-art performance on location-identity, subject-identity and painting-artist verification, showing its efficacy across a diverse set of scenarios.



rate research

Read More

It is well known that humans can learn and recognize objects effectively from several limited image samples. However, learning from just a few images is still a tremendous challenge for existing main-stream deep neural networks. Inspired by analogical reasoning in the human mind, a feasible strategy is to translate the abundant images of a rich source domain to enrich the relevant yet different target domain with insufficient image data. To achieve this goal, we propose a novel, effective multi-adversarial framework (MA) based on part-global learning, which accomplishes one-shot cross-domain image-to-image translation. In specific, we first devise a part-global adversarial training scheme to provide an efficient way for feature extraction and prevent discriminators being over-fitted. Then, a multi-adversarial mechanism is employed to enhance the image-to-image translation ability to unearth the high-level semantic representation. Moreover, a balanced adversarial loss function is presented, which aims to balance the training data and stabilize the training process. Extensive experiments demonstrate that the proposed approach can obtain impressive results on various datasets between two extremely imbalanced image domains and outperform state-of-the-art methods on one-shot image-to-image translation.
The identification of lesion within medical image data is necessary for diagnosis, treatment and prognosis. Segmentation and classification approaches are mainly based on supervised learning with well-paired image-level or voxel-level labels. However, labeling the lesion in medical images is laborious requiring highly specialized knowledge. We propose a medical image synthesis model named abnormal-to-normal translation generative adversarial network (ANT-GAN) to generate a normal-looking medical image based on its abnormal-looking counterpart without the need for paired training data. Unlike typical GANs, whose aim is to generate realistic samples with variations, our more restrictive model aims at producing a normal-looking image corresponding to one containing lesions, and thus requires a special design. Being able to provide a normal counterpart to a medical image can provide useful side information for medical imaging tasks like lesion segmentation or classification validated by our experiments. In the other aspect, the ANT-GAN model is also capable of producing highly realistic lesion-containing image corresponding to the healthy one, which shows the potential in data augmentation verified in our experiments.
Surrogate task based methods have recently shown great promise for unsupervised image anomaly detection. However, there is no guarantee that the surrogate tasks share the consistent optimization direction with anomaly detection. In this paper, we return to a direct objective function for anomaly detection with information theory, which maximizes the distance between normal and anomalous data in terms of the joint distribution of images and their representation. Unfortunately, this objective function is not directly optimizable under the unsupervised setting where no anomalous data is provided during training. Through mathematical analysis of the above objective function, we manage to decompose it into four components. In order to optimize in an unsupervised fashion, we show that, under the assumption that distribution of the normal and anomalous data are separable in the latent space, its lower bound can be considered as a function which weights the trade-off between mutual information and entropy. This objective function is able to explain why the surrogate task based methods are effective for anomaly detection and further point out the potential direction of improvement. Based on this object function we introduce a novel information theoretic framework for unsupervised image anomaly detection. Extensive experiments have demonstrated that the proposed framework significantly outperforms several state-of-the-arts on multiple benchmark data sets.
131 - Hengyue Pan , Hui Jiang 2017
In the past few years, Generative Adversarial Network (GAN) became a prevalent research topic. By defining two convolutional neural networks (G-Network and D-Network) and introducing an adversarial procedure between them during the training process, GAN has ability to generate good quality images that look like natural images from a random vector. Besides image generation, GAN may have potential to deal with wide range of real world problems. In this paper, we follow the basic idea of GAN and propose a novel model for image saliency detection, which is called Supervised Adversarial Networks (SAN). Specifically, SAN also trains two models simultaneously: the G-Network takes natural images as inputs and generates corresponding saliency maps (synthetic saliency maps), and the D-Network is trained to determine whether one sample is a synthetic saliency map or ground-truth saliency map. However, different from GAN, the proposed method uses fully supervised learning to learn both G-Network and D-Network by applying class labels of the training set. Moreover, a novel kind of layer call conv-comparison layer is introduced into the D-Network to further improve the saliency performance by forcing the high-level feature of synthetic saliency maps and ground-truthes as similar as possible. Experimental results on Pascal VOC 2012 database show that the SAN model can generate high quality saliency maps for many complicate natural images.
157 - Quanyu Liao , Yuezun Li , Xin Wang 2021
Fooling people with highly realistic fake images generated with Deepfake or GANs brings a great social disturbance to our society. Many methods have been proposed to detect fake images, but they are vulnerable to adversarial perturbations -- intentionally designed noises that can lead to the wrong prediction. Existing methods of attacking fake image detectors usually generate adversarial perturbations to perturb almost the entire image. This is redundant and increases the perceptibility of perturbations. In this paper, we propose a novel method to disrupt the fake image detection by determining key pixels to a fake image detector and attacking only the key pixels, which results in the $L_0$ and the $L_2$ norms of adversarial perturbations much less than those of existing works. Experiments on two public datasets with three fake image detectors indicate that our proposed method achieves state-of-the-art performance in both white-box and black-box attacks.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا