Do you want to publish a course? Click here

Masses, Sheets and Rigid SCFTs

54   0   0.0 ( 0 )
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We study mass deformations of certain three dimensional $mathcal{N}=4$ Superconformal Field Theories (SCFTs) that have come to be called $T^rho[G]$ theories. These are associated to tame defects of the six dimensional $(0,2)$ SCFT $X[mathfrak{j}]$ for $mathfrak{j}=A,D,E$. We describe these deformations using a refined version of the theory of sheets, a subject of interest in Geometric Representation Theory. In mathematical terms, we parameterize local mass-like deformations of the tamely ramified Hitchin integrable system and identify the subset of the deformations that do admit an interpretation as a mass deformation for the theories under consideration. We point out the existence of non-trivial Rigid SCFTs among these theories. We classify the Rigid theories within this set of SCFTs and give a description of their Higgs and Coulomb branches. We then study the implications for the endpoints of RG flows triggered by mass deformations in these 3d $mathcal{N}=4$ theories. Finally, we discuss connections with the recently proposed idea of Symplectic Duality and describe some conjectures about its action.



rate research

Read More

Recent work on 6D superconformal field theories (SCFTs) has established an intricate correspondence between certain Higgs branch deformations and nilpotent orbits of flavor symmetry algebras associated with T-branes. In this paper, we return to the stringy origin of these theories and show that many aspects of these deformations can be understood in terms of simple combinatorial data associated with multi-pronged strings stretched between stacks of intersecting 7-branes in F-theory. This data lets us determine the full structure of the nilpotent cone for each semi-simple flavor symmetry algebra, and it further allows us to characterize symmetry breaking patterns in quiver-like theories with classical gauge groups. An especially helpful feature of this analysis is that it extends to short quivers in which the breaking patterns from different flavor symmetry factors are correlated.
Recent work has established a uniform characterization of most 6D SCFTs in terms of generalized quivers with conformal matter. Compactification of the partial tensor branch deformation of these theories on a $T^2$ leads to 4D $mathcal{N} = 2$ SCFTs which are also generalized quivers. Taking products of bifundamental conformal matter operators, we present evidence that there are large R-charge sectors of the theory in which operator mixing is captured by a 1D spin chain Hamiltonian with operator scaling dimensions controlled by a perturbation series in inverse powers of the R-charge. We regulate the inherent divergences present in the 6D computations with the associated 5D Kaluza--Klein theory. In the case of 6D SCFTs obtained from M5-branes probing a $mathbb{C}^{2}/mathbb{Z}_{K}$ singularity, we show that there is a class of operators where the leading order mixing effects are captured by the integrable Heisenberg $XXX_{s=1/2}$ spin chain with open boundary conditions, and similar considerations hold for its $T^2$ reduction to a 4D $mathcal{N}=2$ SCFT. In the case of M5-branes probing more general D- and E-type singularities where generalized quivers have conformal matter, we argue that similar mixing effects are captured by an integrable $XXX_{s}$ spin chain with $s>1/2$. We also briefly discuss some generalizations to other operator sectors as well as little string theories.
We analyze the N=2 superconformal field theories that arise when a pair of D3-branes probe an F-theory singularity from the perspective of the associated vertex operator algebra. We identify these vertex operator algebras for all cases; we find that they have a completely uniform description, parameterized by the dual Coxeter number of the corresponding global symmetry group. We further present free field realizations for these algebras in the style of recent work by three of the authors. These realizations transparently reflect the algebraic structure of the Higgs branches of these theories. We find fourth-order linear modular differential equations for the vacuum characters/Schur indices of these theories, which are again uniform across the full family of theories and parameterized by the dual Coxeter number. We comment briefly on expectations for the still higher-rank cases.
We use holographic renormalization of minimal $mathcal{N}=2$ gauged supergravity in order to derive the general form of the quantum Ward identities for 3d $mathcal{N}=2$ and 4d $mathcal{N}=1$ superconformal theories on general curved backgrounds, including an arbitrary fermionic source for the supercurrent. The Ward identities for 4d $mathcal{N}=1$ theories contain both bosonic and fermionic global anomalies, which we determine explicitly up to quadratic order in the supercurrent source. The Ward identities we derive apply to any superconformal theory, independently of whether it admits a holographic dual, except for the specific values of the $a$ and $c$ anomaly coefficients, which are equal due to our starting point of a two-derivative bulk supergravity theory. We show that the fermionic anomalies lead to an anomalous transformation of the supercurrent under rigid supersymmetry on backgrounds admitting Killing spinors, even if all superconformal anomalies are numerically zero on such backgrounds. The anomalous transformation of the supercurrent under rigid supersymmetry leads to an obstruction to the $Q$-exactness of the stress tensor in supersymmetric vacua, and may have implications for the applicability of localization techniques. We use this obstruction to the $Q$-exactness of the stress tensor, together with the Ward identities, in order to determine the general form of the stress tensor and $R$-current one-point functions in supersymmetric vacua, which allows us to obtain general expressions for the supersymmetric Casimir charges and partition function.
150 - Jonathan J. Heckman 2020
We consider a class of 6D superconformal field theories (SCFTs) which have a large $N$ limit and a semi-classical gravity dual description. Using the quiver-like structure of 6D SCFTs we study a subsector of operators protected from large operator mixing. These operators are characterized by degrees of freedom in a one-dimensional spin chain, and the associated states are generically highly entangled. This provides a concrete realization of qubit-like states in a strongly coupled quantum field theory. Renormalization group flows triggered by deformations of 6D UV fixed points translate to specific deformations of these one-dimensional spin chains. We also present a conjectural spin chain Hamiltonian which tracks the evolution of these states as a function of renormalization group flow, and study qubit manipulation in this setting. Similar considerations hold for theories without $AdS$ duals, such as 6D little string theories and 4D SCFTs obtained from compactification of the partial tensor branch theory on a $T^2$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا