Do you want to publish a course? Click here

A survey of models for $(infty, n)$-categories

212   0   0.0 ( 0 )
 Added by Julia Bergner
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

We give describe several models for $(infty,n)$-categories, with an emphasis on models given by diagrams of sets and simplicial sets. We look most closely at the cases when $n leq 2$, then summarize methods of generalizing for all $n$.



rate research

Read More

In this paper we complete a chain of explicit Quillen equivalences between the model category for $Theta_{n+1}$-spaces and the model category of small categories enriched in $Theta_n$-spaces. The Quillen equivalences given here connect Segal category objects in $Theta_n$-spaces, complete Segal objects in $Theta_n$-spaces, and $Theta_{n+1}$-spaces.
203 - Rune Haugseng 2015
We introduce a notion of bimodule in the setting of enriched $infty$-categories, and use this to construct a double $infty$-category of enriched $infty$-categories where the two kinds of 1-morphisms are functors and bimodules. We then consider a natural definition of natural transformations in this context, and show that in the underlying $(infty,2)$-category of enriched $infty$-categories with functors as 1-morphisms the 2-morphisms are given by natural transformations.
Let $f:Gto mathrm{Pic}(R)$ be a map of $E_infty$-groups, where $mathrm{Pic}(R)$ denotes the Picard space of an $E_infty$-ring spectrum $R$. We determine the tensor $Xotimes_R Mf$ of the Thom $E_infty$-$R$-algebra $Mf$ with a space $X$; when $X$ is the circle, the tensor with $X$ is topological Hochschild homology over $R$. We use the theory of localizations of $infty$-categories as a technical tool: we contribute to this theory an $infty$-categorical analogue of Days reflection theorem about closed symmetric monoidal structures on localizations, and we prove that for a smashing localization $L$ of the $infty$-category of presentable $infty$-categories, the free $L$-local presentable $infty$-category on a small simplicial set $K$ is given by presheaves on $K$ valued on the $L$-localization of the $infty$-category of spaces. If $X$ is a pointed space, a map $g: Ato B$ of $E_infty$-ring spectra satisfies $X$-base change if $Xotimes B$ is the pushout of $Ato Xotimes A$ along $g$. Building on a result of Mathew, we prove that if $g$ is etale then it satisfies $X$-base change provided $X$ is connected. We also prove that $g$ satisfies $X$-base change provided the multiplication map of $B$ is an equivalence. Finally, we prove that, under some hypotheses, the Thom isomorphism of Mahowald cannot be an instance of $S^0$-base change.
We show that a well behaved Noetherian, finite dimensional, stable, monoidal model category is equivalent to a model built from categories of modules over completed rings in an adelic fashion. For abelian groups this is based on the Hasse square, for chromatic homotopy theory this is based on the chromatic fracture square, and for rational torus-equivariant homotopy theory this is the model of Greenlees-Shipley arXiv:1101.2511.
We propose foundations for a synthetic theory of $(infty,1)$-categories within homotopy type theory. We axiomatize a directed interval type, then define higher simplices from it and use them to probe the internal categorical structures of arbitrary types. We define Segal types, in which binary composites exist uniquely up to homotopy; this automatically ensures composition is coherently associative and unital at all dimensions. We define Rezk types, in which the categorical isomorphisms are additionally equivalent to the type-theoretic identities - a local univalence condition. And we define covariant fibrations, which are type families varying functorially over a Segal type, and prove a dependent Yoneda lemma that can be viewed as a directed form of the usual elimination rule for identity types. We conclude by studying homotopically correct adjunctions between Segal types, and showing that for a functor between Rezk types to have an adjoint is a mere proposition. To make the bookkeeping in such proofs manageable, we use a three-layered type theory with shapes, whose contexts are extended by polytopes within directed cubes, which can be abstracted over using extension types that generalize the path-types of cubical type theory. In an appendix, we describe the motivating semantics in the Reedy model structure on bisimplicial sets, in which our Segal and Rezk types correspond to Segal spaces and complete Segal spaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا