No Arabic abstract
We critically investigate the purported existence of a multiglass state in the quantum paraelectrics SrTiO${_3}$ and KTaO${_3}$ doped with magnetic 3d transition metals. We observe that the transition metals have limited solubility in these hosts, and that traces of impurity magnetic oxides persist even in the most well processed specimens. Our dielectric measurements indicate that the polar nano-regions formed as a consequence of doping appear to lack co-operativity, and the associated relaxation process exhibits a thermally activated Arrhenius form. At lower temperatures, the dielectric susceptibility could be fit using the Barretts formalism, indicating that the quantum-paraelectric nature of the host lattices are unaltered by the doping of magnetic transition metal oxides. All these doped quantum paraelectrics exhibit a crossover from the high temperature Curie-Weiss regime to one dominated by quantum fluctuations, as evidenced by a $T{^2}$ dependence of the temperature dependent dielectric susceptibility. The temperature dependence of the magnetic susceptibility indicate that magnetic signatures observed in some of the specimens could be solely ascribed to the presence of impurity oxides corresponding to the magnetic dopants used. Hence, the doped quantum paraelectrics appear to remain intrinsically paramagnetic down to the lowest measured temperatures, ruling out the presence of a multiglass state.
We investigate the spectral properties of a hole moving in a two-dimensional Hubbard model for strongly correlated t_2g electrons. Although superexchange interactions are Ising-like, a quasi-one-dimensional coherent hole motion arises due to effective three-site terms. This mechanism is fundamentally different from the hole motion via quantum fluctuations in the conventional spin model with SU(2) symmetry. The orbital model describes also propagation of a hole in some e_g compounds, and we argue that orbital degeneracy alone does not lead to hole self-localization.
We study the transition at T=0 from a ferromagnetic insulating to a ferromagnetic metallic phase in manganites as a function of hole doping using an effective low-energy model Hamiltonian proposed by us recently. The model incorporates the quantum nature of the dynamic Jahn-Teller(JT) phonons strongly coupled to orbitally degenerate electrons as well as strong Coulomb correlation effects and leads naturally to the coexistence of localized (JT polaronic) and band-like electronic states. We study the insulator-metal transition as a function of doping as well as of the correlation strength U and JT gain in energy E_{JT}, and find, for realistic values of parameters, a ground state phase diagram in agreement with experiments. We also discuss how several other features of manganites as well as differences in behaviour among manganites can be understood in terms of our model.
The persistent proximity of insulating and metallic phases, a puzzling characterestic of manganites, is argued to arise from the self organization of the twofold degenerate e_g orbitals of Mn into localized Jahn-Teller(JT) polaronic levels and broad band states due to the large electron - JT phonon coupling present in them. We describe a new two band model with strong correlations and a dynamical mean-field theory calculation of equilibrium and transport properties. These explain the insulator metal transition and colossal magnetoresistance quantitatively, as well as other consequences of two state coexistence.
Polycrystalline CuO samples with Co doping were prepared by solid state method with flowing oxygen condition and examined their structural and multiferroic properties. Structural studies have confirmed single phase monoclinic crystal structure of all samples, however, in Co doped samples a decrease in volume with an increase in monoclinic distortion is found. For pristine sample, temperature dependent magnetization has confirmed two antiferromagnetic (AFM) transitions at 213 K and 230 K and frequency independent dielectric peaks at these AFM transitions suggesting the ferroelectric nature. Magnetization of the Co doped samples has showed a marginal increase in ordering temperature of the high-temperature AFM transition and decrease in low temperature AFM ordering temperature. Further, doped samples have shown giant dielectric constant with no signature of ferroelectricity. The x-ray photoelectric spectroscopy study has revealed multiple valance states for both Co and Cu in the doped samples that simultaneously explain the giant dielectric constant and suppression of ferroelectric order.
We study the quantum paraelectric-ferroelectric transition near a quantum critical point, emphasizing the role of temperature as a finite size effect in time. The influence of temperature near quantum criticality may thus be likened to a temporal Casimir effect. The resulting finite-size scaling approach yields $frac{1}{T^2}$ behavior of the paraelectric susceptibility ($chi$) and the scaling form $chi(omega,T) = frac{1}{omega^2} F(frac{omega}{T})$, recovering results previously found by more technical methods. We use a Gaussian theory to illustrate how these temperature-dependences emerge from a microscopic approach; we characterize the classical-quantum crossover in $chi$, and the resulting phase diagram is presented. We also show that coupling to an acoustic phonon at low temperatures ($T$) is relevant and influences the transition line, possibly resulting in a reentrant quantum ferroelectric phase. Observable consequences of our approach for measurements on specific paraelectric materials at low temperatures are discussed.