Do you want to publish a course? Click here

Parity Decision Tree Complexity is Greater Than Granularity

78   0   0.0 ( 0 )
 Added by Vladimir Podolskii
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We prove a new lower bound on the parity decision tree complexity $mathsf{D}_{oplus}(f)$ of a Boolean function $f$. Namely, granularity of the Boolean function $f$ is the smallest $k$ such that all Fourier coefficients of $f$ are integer multiples of $1/2^k$. We show that $mathsf{D}_{oplus}(f)geq k+1$. This lower bound is an improvement of lower bounds through the sparsity of $f$ and through the degree of $f$ over $mathbb{F}_2$. Using our lower bound we determine the exact parity decision tree complexity of several important Boolean functions including majority and recursive majority. For majority the complexity is $n - mathsf{B}(n)+1$, where $mathsf{B}(n)$ is the number of ones in the binary representation of $n$. For recursive majority the complexity is $frac{n+1}{2}$. Finally, we provide an example of a function for which our lower bound is not tight. Our results imply new lower bound of $n - mathsf{B}(n)$ on the multiplicative complexity of majority.



rate research

Read More

154 - Penghui Yao 2015
In this note, we study the relation between the parity decision tree complexity of a boolean function $f$, denoted by $mathrm{D}_{oplus}(f)$, and the $k$-party number-in-hand multiparty communication complexity of the XOR functions $F(x_1,ldots, x_k)= f(x_1opluscdotsoplus x_k)$, denoted by $mathrm{CC}^{(k)}(F)$. It is known that $mathrm{CC}^{(k)}(F)leq kcdotmathrm{D}_{oplus}(f)$ because the players can simulate the parity decision tree that computes $f$. In this note, we show that [mathrm{D}_{oplus}(f)leq Obig(mathrm{CC}^{(4)}(F)^5big).] Our main tool is a recent result from additive combinatorics due to Sanders. As $mathrm{CC}^{(k)}(F)$ is non-decreasing as $k$ grows, the parity decision tree complexity of $f$ and the communication complexity of the corresponding $k$-argument XOR functions are polynomially equivalent whenever $kgeq 4$. Remark: After the first version of this paper was finished, we discovered that Hatami and Lovett had already discovered the same result a few years ago, without writing it up.
We prove that for every parity decision tree of depth $d$ on $n$ variables, the sum of absolute values of Fourier coefficients at level $ell$ is at most $d^{ell/2} cdot O(ell cdot log(n))^ell$. Our result is nearly tight for small values of $ell$ and extends a previous Fourier bound for standard decision trees by Sherstov, Storozhenko, and Wu (STOC, 2021). As an application of our Fourier bounds, using the results of Bansal and Sinha (STOC, 2021), we show that the $k$-fold Forrelation problem has (randomized) parity decision tree complexity $tilde{Omega}left(n^{1-1/k}right)$, while having quantum query complexity $lceil k/2rceil$. Our proof follows a random-walk approach, analyzing the contribution of a random path in the decision tree to the level-$ell$ Fourier expression. To carry the argument, we apply a careful cleanup procedure to the parity decision tree, ensuring that the value of the random walk is bounded with high probability. We observe that step sizes for the level-$ell$ walks can be computed by the intermediate values of level $le ell-1$ walks, which calls for an inductive argument. Our approach differs from previous proofs of Tal (FOCS, 2020) and Sherstov, Storozhenko, and Wu (STOC, 2021) that relied on decompositions of the tree. In particular, for the special case of standard decision trees we view our proof as slightly simpler and more intuitive. In addition, we prove a similar bound for noisy decision trees of cost at most $d$ -- a model that was recently introduced by Ben-David and Blais (FOCS, 2020).
Each Boolean function can be computed by a single-pass instruction sequence that contains only instructions to set and get the content of Boolean registers, forward jump instructions, and a termination instruction. Auxiliary Boolean registers are not necessary for this. In the current paper, we show that, in the case of the parity functions, shorter instruction sequences are possible with the use of an auxiliary Boolean register in the presence of instructions to complement the content of auxiliary Boolean registers. This result supports, in a setting where programs are instruction sequences acting on Boolean registers, a basic intuition behind the storage of auxiliary data, namely the intuition that this makes possible a reduction of the size of a program.
We study parity decision trees for Boolean functions. The motivation of our study is the log-rank conjecture for XOR functions and its connection to Fourier analysis and parity decision tree complexity. Let f be a Boolean function with Fourier support S and Fourier sparsity k. 1) We prove via the probabilistic method that there exists a parity decision tree of depth O(sqrt k) that computes f. This matches the best known upper bound on the parity decision tree complexity of Boolean functions (Tsang, Wong, Xie, and Zhang, FOCS 2013). Moreover, while previous constructions (Tsang et al., FOCS 2013, Shpilka, Tal, and Volk, Comput. Complex. 2017) build the trees by carefully choosing the parities to be queried in each step, our proof shows that a naive sampling of the parities suffices. 2) We generalize the above result by showing that if the Fourier spectra of Boolean functions satisfy a natural folding property, then the above proof can be adapted to establish existence of a tree of complexity polynomially smaller than O(sqrt k). We make a conjecture in this regard which, if true, implies that the communication complexity of an XOR function is bounded above by the fourth root of the rank of its communication matrix, improving upon the previously known upper bound of square root of rank (Tsang et al., FOCS 2013, Lovett, J. ACM. 2016). 3) It can be shown by elementary techniques that for any Boolean function f and all pairs (alpha, beta) of parities in S, there exists another pair (gamma, delta) of parities in S such that alpha + beta = gamma + delta. We show, among other results, that there must exist several gamma in F_2^n such that there are at least three pairs (alpha_1, alpha_2) of parities in S with alpha_1 + alpha_2 = gamma.
According to Aristotle, a philosopher in Ancient Greece, the whole is greater than the sum of its parts. This observation was adopted to explain human perception by the Gestalt psychology school of thought in the twentieth century. Here, we claim that observing part of an object which was previously acquired as a whole, one could deal with both partial matching and shape completion in a holistic manner. More specifically, given the geometry of a full, articulated object in a given pose, as well as a partial scan of the same object in a different pose, we address the problem of matching the part to the whole while simultaneously reconstructing the new pose from its partial observation. Our approach is data-driven, and takes the form of a Siamese autoencoder without the requirement of a consistent vertex labeling at inference time; as such, it can be used on unorganized point clouds as well as on triangle meshes. We demonstrate the practical effectiveness of our model in the applications of single-view deformable shape completion and dense shape correspondence, both on synthetic and real-world geometric data, where we outperform prior work on these tasks by a large margin.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا