Do you want to publish a course? Click here

Improving Fast Segmentation With Teacher-student Learning

88   0   0.0 ( 0 )
 Added by Jiafeng Xie
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Recently, segmentation neural networks have been significantly improved by demonstrating very promising accuracies on public benchmarks. However, these models are very heavy and generally suffer from low inference speed, which limits their application scenarios in practice. Meanwhile, existing fast segmentation models usually fail to obtain satisfactory segmentation accuracies on public benchmarks. In this paper, we propose a teacher-student learning framework that transfers the knowledge gained by a heavy and better performed segmentation network (i.e. teacher) to guide the learning of fast segmentation networks (i.e. student). Specifically, both zero-order and first-order knowledge depicted in the fine annotated images and unlabeled auxiliary data are transferred to regularize our student learning. The proposed method can improve existing fast segmentation models without incurring extra computational overhead, so it can still process images with the same fast speed. Extensive experiments on the Pascal Context, Cityscape and VOC 2012 datasets demonstrate that the proposed teacher-student learning framework is able to significantly boost the performance of student network.



rate research

Read More

Purpose: Segmentation of surgical instruments in endoscopic videos is essential for automated surgical scene understanding and process modeling. However, relying on fully supervised deep learning for this task is challenging because manual annotation occupies valuable time of the clinical experts. Methods: We introduce a teacher-student learning approach that learns jointly from annotated simulation data and unlabeled real data to tackle the erroneous learning problem of the current consistency-based unsupervised domain adaptation framework. Results: Empirical results on three datasets highlight the effectiveness of the proposed framework over current approaches for the endoscopic instrument segmentation task. Additionally, we provide analysis of major factors affecting the performance on all datasets to highlight the strengths and failure modes of our approach. Conclusion: We show that our proposed approach can successfully exploit the unlabeled real endoscopic video frames and improve generalization performance over pure simulation-based training and the previous state-of-the-art. This takes us one step closer to effective segmentation of surgical tools in the annotation scarce setting.
Recently, deep learning has been adopted to the glaucoma classification task with performance comparable to that of human experts. However, a well trained deep learning model demands a large quantity of properly labeled data, which is relatively expensive since the accurate labeling of glaucoma requires years of specialist training. In order to alleviate this problem, we propose a glaucoma classification framework which takes advantage of not only the properly labeled images, but also undiagnosed images without glaucoma labels. To be more specific, the proposed framework is adapted from the teacher-student-learning paradigm. The teacher model encodes the wrapped information of undiagnosed images to a latent feature space, meanwhile the student model learns from the teacher through knowledge transfer to improve the glaucoma classification. For the model training procedure, we propose a novel training strategy that simulates the real-world teaching practice named as Learning To Teach with Knowledge Transfer (L2T-KT), and establish a Quiz Pool as the teachers optimization target. Experiments show that the proposed framework is able to utilize the undiagnosed data effectively to improve the glaucoma prediction performance.
In medical image analysis, semi-supervised learning is an effective method to extract knowledge from a small amount of labeled data and a large amount of unlabeled data. This paper focuses on a popular pipeline known as self learning, and points out a weakness named lazy learning that refers to the difficulty for a model to learn from the pseudo labels generated by itself. To alleviate this issue, we propose ATSO, an asynchronous version of teacher-student optimization. ATSO partitions the unlabeled data into two subsets and alternately uses one subset to fine-tune the model and updates the label on the other subset. We evaluate ATSO on two popular medical image segmentation datasets and show its superior performance in various semi-supervised settings. With slight modification, ATSO transfers well to natural image segmentation for autonomous driving data.
82 - Fei Ye , Adrian G. Bors 2021
A unique cognitive capability of humans consists in their ability to acquire new knowledge and skills from a sequence of experiences. Meanwhile, artificial intelligence systems are good at learning only the last given task without being able to remember the databases learnt in the past. We propose a novel lifelong learning methodology by employing a Teacher-Student network framework. While the Student module is trained with a new given database, the Teacher module would remind the Student about the information learnt in the past. The Teacher, implemented by a Generative Adversarial Network (GAN), is trained to preserve and replay past knowledge corresponding to the probabilistic representations of previously learn databases. Meanwhile, the Student module is implemented by a Variational Autoencoder (VAE) which infers its latent variable representation from both the output of the Teacher module as well as from the newly available database. Moreover, the Student module is trained to capture both continuous and discrete underlying data representations across different domains. The proposed lifelong learning framework is applied in supervised, semi-supervised and unsupervised training. The code is available~: url{https://github.com/dtuzi123/Lifelong-Teacher-Student-Network-Learning}
In this paper, we propose a novel end-to-end feature compression scheme by leveraging the representation and learning capability of deep neural networks, towards intelligent front-end equipped analysis with promising accuracy and efficiency. In particular, the extracted features are compactly coded in an end-to-end manner by optimizing the rate-distortion cost to achieve feature-in-feature representation. In order to further improve the compression performance, we present a latent code level teacher-student enhancement model, which could efficiently transfer the low bit-rate representation into a high bit rate one. Such a strategy further allows us to adaptively shift the representation cost to decoding computations, leading to more flexible feature compression with enhanced decoding capability. We verify the effectiveness of the proposed model with the facial feature, and experimental results reveal better compression performance in terms of rate-accuracy compared with existing models.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا