Do you want to publish a course? Click here

First-principles quantum transport simulation of CuPc on Au(111) and Ag(111)

169   0   0.0 ( 0 )
 Added by Michael Rumetshofer
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigate equilibrium and transport properties of a copper phthalocyanine (CuPc) molecule adsorbed on Au(111) and Ag(111) surfaces. The CuPc molecule has essentially three localized orbitals close to the Fermi energy resulting in strong local Coulomb repulsion not accounted for properly in density functional calculations. Hence, they require a proper many-body treatment within, e.g., the Anderson impurity model (AIM). The occupancy of these orbitals varies with the substrate on which CuPc is adsorbed. Starting from density functional theory calculations, we determine the parameters for the AIM embedded in a noninteracting environment that describes the residual orbitals of the entire system. While correlation effects in CuPc on Au(111) are already properly described by a single orbital AIM, for CuPc on Ag(111) the three orbital AIM problem can be simplified into a two orbital problem coupled to the localized spin of the third orbital. This results in a Kondo effect with a mixed character, displaying a symmetry between SU(2) and SU(4). The computed Kondo temperature is in good agreement with experimental values. To solve the impurity problem we use the recently developed fork tensor product state solver. To obtain transport properties, a scanning tunneling microscope (STM) tip is added to the CuPc molecule absorbed on the surface. We find that the transmission depends on the detailed position of the STM tip above the CuPc molecule in good agreement with differential conductance measurements.



rate research

Read More

Geometry, electronic structure, and magnetic properties of methylthiolate-stabilized Au$_{25}$L$_{18}$ and MnAu$_{24}$L$_{18}$ (L = SCH$_3$) clusters adsorbed on noble-metal (111) surfaces have been investigated by using spin-polarized density functional theory computations. The interaction between the cluster and the surface is found to be mediated by charge transfer mainly from or into the ligand monolayer. The electronic properties of the 13-atom metal core remain in all cases rather undisturbed as compared to the isolated clusters in gas phase. The Au$_{25}$L$_{18}$ cluster retains a clear HOMO - LUMO energy gap in the range of 0.7 eV to 1.0 eV depending on the surface. The ligand layer is able to decouple the electronic structure of the magnetic MnAu$_{24}$L$_{18}$ cluster from Au(111) surface, retaning a high local spin moment of close to 5 $mu_{B}$ arising from the spin-polarized Mn(3d) electrons. These computations imply that the thiolate monolayer-protected gold clusters may be used as promising building blocks with tunable energy gaps, tunneling barriers, and magnetic moments for applications in the area of electron and/or spin transport.
Landaus Fermi liquid theory is a cornerstone of quantum many body physics. At its heart is the adiabatic connection between the elementary excitations of an interacting fermion system and those of the same system with the interactions turned off. Recently, this tenet has been challenged with the finding of a non-Landau Fermi liquid, that is a strongly interacting Fermi liquid that cannot be adiabatically connected to a non-interacting system. In particular, a spin-1 two-channel Kondo impurity with single-ion magnetic anisotropy $D$ has a topological quantum phase transition at a critical value $D_c$: for $D < D_c$ the system behaves as an ordinary Fermi liquid with a large Fermi level spectral weight, while above $D_c$ the system is a non-Landau Fermi liquid with a pseudogap at the Fermi level, topologically characterized by a non-trivial Friedel sum rule with non-zero Luttinger integrals. Here, we develop a non-trivial extension of this new Fermi liquid theory to general multi-orbital problems with finite magnetic field and we reinterpret in a unified and consistent fashion several experimental studies of iron phthalocyanine molecules on Au(111) metal substrate that were previously described in disconnected and conflicting ways. The differential conductance measured using a scanning tunneling microscope (STM) shows a zero-bias dip that widens when the molecule is lifted from the surface and is transformed continuously into a peak under an applied magnetic field. Numerically solving a spin-1 impurity model with single-ion anisotropy for realistic parameter values, we robustly reproduce all these central features, allowing us to conclude that iron phthalocyanine molecules on Au(111) constitute the first confirmed experimental realization of a non-Landau Fermi liquid.
The electronic structure of epitaxial single-layer MoS$_2$ on Au(111) is investigated by angle-resolved photoemission spectroscopy, scanning tunnelling spectroscopy, and first principles calculations. While the band dispersion of the supported single-layer is close to a free-standing layer in the vicinity of the valence band maximum at $bar{K}$ and the calculated electronic band gap on Au(111) is similar to that calculated for the free-standing layer, significant modifications to the band structure are observed at other points of the two-dimensional Brillouin zone: At $bar{Gamma}$, the valence band maximum has a significantly higher binding energy than in the free MoS$_2$ layer and the expected spin-degeneracy of the uppermost valence band at the $bar{M}$ point cannot be observed. These band structure changes are reproduced by the calculations and can be explained by the detailed interaction of the out-of-plane MoS$_2$ orbitals with the substrate.
We present a detailed theoretical investigation on the magnetic properties of small single-layered Fe, Co and Ni clusters deposited on Ir(111), Pt(111) and Au(111). For this a fully relativistic {em ab-initio} scheme based on density functional theory has been used. We analyse the element, size and geometry specific variations of the atomic magnetic moments and their mutual exchange interactions as well as the magnetic anisotropy energy in these systems. Our results show that the atomic spin magnetic moments in the Fe and Co clusters decrease almost linearly with coordination on all three substrates, while the corresponding orbital magnetic moments appear to be much more sensitive to the local atomic environment. The isotropic exchange interaction among the cluster atoms is always very strong for Fe and Co exceeding the values for bulk bcc Fe and hcp Co, whereas the anisotropic Dzyaloshinski-Moriya interaction is in general one or two orders of magnitude smaller when compared to the isotropic one. For the magnetic properties of Ni clusters the magnetic properties can show quite a different behaviour and we find in this case a strong tendency towards noncollinear magnetism.
Part of developing new strategies for fabrications of nanowire structures involves in many cases the aid of metal nanoparticles (NPs). It is highly beneficial if one can define both diameter and position of the initial NPs and make well-defined nanowire arrays. This sets additional requirement on the NPs with respect to being able to withstand a pre-growth annealing process (i.e. de- oxidation of the III-V semiconductor surface) in an epitaxy system. Recently, it has been demonstrated that Ag may be an alternative to using Au NPs as seeds for particle-seeded nanowire fabrication. This work brings light onto the effect of annealing of Au, Ag and Au-Ag alloy NP arrays in two commonly used epitaxial systems, the Molecular Beam Epitaxy (MBE) and the Metalorganic Vapor Phase Epitaxy (MOVPE). The NP arrays are fabricated with the aid of Electron Beam Lithography on GaAs 100 and 111B wafers and the evolution of the NPs with respect to shape, size and position on the surfaces are studied after annealing using Scanning Electron Microscopy (SEM). We find that while the Au NP arrays are found to be stable when annealed up to 600 $^{circ}$C in a MOVPE system, a diameter and pitch dependent splitting of the particles are seen for annealing in a MBE system. The Ag NP arrays are less stable, with smaller diameters ($leq$ 50 nm) dissolving during annealing in both epitaxial systems. In general, the mobility of the NPs is observed to differ between the two the GaAs 100 and 111B surfaces. While the initial pattern is found be intact on the GaAs 111B surface for a particular annealing process and particle type, the increased mobility of the NP on the 100 may influence the initial pre-defined positions at higher annealing temperatures. The effect of annealing on Au-Ag alloy NP arrays suggests that these NP can withstand necessary annealing conditions for a complete de-oxidation of GaAs surfaces.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا