Do you want to publish a course? Click here

Single-layer MoS$_2$ on Au(111): band gap renormalization and substrate interaction

359   0   0.0 ( 0 )
 Added by Philip Hofmann
 Publication date 2016
  fields Physics
and research's language is English




Ask ChatGPT about the research

The electronic structure of epitaxial single-layer MoS$_2$ on Au(111) is investigated by angle-resolved photoemission spectroscopy, scanning tunnelling spectroscopy, and first principles calculations. While the band dispersion of the supported single-layer is close to a free-standing layer in the vicinity of the valence band maximum at $bar{K}$ and the calculated electronic band gap on Au(111) is similar to that calculated for the free-standing layer, significant modifications to the band structure are observed at other points of the two-dimensional Brillouin zone: At $bar{Gamma}$, the valence band maximum has a significantly higher binding energy than in the free MoS$_2$ layer and the expected spin-degeneracy of the uppermost valence band at the $bar{M}$ point cannot be observed. These band structure changes are reproduced by the calculations and can be explained by the detailed interaction of the out-of-plane MoS$_2$ orbitals with the substrate.



rate research

Read More

The spin structure of the valence and conduction bands at the $overline{text{K}}$ and $overline{text{K}}$ valleys of single-layer WS$_2$ on Au(111) is determined by spin- and angle-resolved photoemission and inverse photoemission. The bands confining the direct band gap of 1.98 eV are out-of-plane spin polarized with spin-dependent energy splittings of 417 meV in the valence band and 16 meV in the conduction band. The sequence of the spin-split bands is the same in the valence and in the conduction bands and opposite at the $overline{text{K}}$ and the $overline{text{K}}$ high-symmetry points. The first observation explains dark excitons discussed in optical experiments, the latter points to coupled spin and valley physics in electron transport. The experimentally observed band dispersions are discussed along with band structure calculations for a freestanding single layer and for a single layer on Au(111).
The epitaxial growth of {111} oriented Au on MoS$_2$ is well documented despite the large lattice mismatch (~8% biaxial strain), and the fact that a Au {001} orientation results in much less elastic strain. An analysis based on density functional and linear elasticity theories reveals that the {111} orientation is stabilized by a combination of favorable surface and interfacial contributions to the energy, and the compliance of the first layer of the MoS$_2$.
The quasiparticle band-gap renormalization induced by the doped carriers is an important and well-known feature in two-dimensional semiconductors, including transition-metal dichalcogenides (TMDs), and it is of both theoretical and practical interest. To get a quantitative understanding of this effect, here we calculate the quasiparticle band-gap renormalization of the electron-doped monolayer MoS$_2$, a prototypical member of TMDs. The many-body electron-electron interaction induced renormalization of the self-energy is found within the random phase approximation and to account for the quasi-2D character of the Coulomb interaction in this system a Keldysh-type interaction with a nonlocal dielectric constant is used. Considering the renormalization of both the valence and the conduction bands, our calculations reveal a large and nonlinear band-gap renormalization upon adding free carriers to the conduction band. We find a 410 meV reduction of the band gap for the monolayer MoS$_2$ on SiO$_2$ substrate at the free carrier density $n=4.9times 10^{12} rm{cm^{-2}}$ which is in excellent agreement with available experimental results. We also discuss the role of exchange and correlation parts of the self-energy on the overall band-gap renormalization of the system. The strong dependence of the band-gap renormalization on the surrounding dielectric environment is also demonstrated in this work, and a much larger shrinkage of the band gap is predicted for the freestanding monolayer MoS$_2$.
We present a complete characterisation at the nanoscale of the growth and structure of single-layer tungsten disulfide (WS$_2$) epitaxially grown on Au(111). Following the growth process in real time with fast x-ray photoelectron spectroscopy, we obtain a singly-oriented layer by choosing the proper W evaporation rate and substrate temperature during the growth. Information about the morphology, size and layer stacking of the WS$_2$ layer were achieved by employing x-ray photoelectron diffraction and low-energy electron microscopy. The strong spin splitting in the valence band of WS$_2$ coupled with the single-orientation character of the layer make this material the ideal candidate for the exploitation of the spin and valley degrees of freedom.
Single layer Pb on top of (111) surfaces of group IV semiconductors hosts charge density wave and superconductivity depending on the coverage and on the substrate. These systems are normally considered to be experimental realizations of single band Hubbard models and their properties are mostly investigated using lattice models with frozen structural degrees of freedom, although the reliability of this approximation is unclear. Here, we consider the case of Pb/Ge(111) at 1/3 coverage, for which surface X-ray diffraction and ARPES data are available. By performing first principles calculations, we demonstrate that the non-local exchange between Pb and the substrate drives the system into a $3times 3$ charge density wave. The electronic structure of this charge ordered phase is mainly determined by two effects: the magnitude of the Pb distortion and the large spin-orbit coupling. Finally, we show that the effect applies also to the $3times 3$ phase of Pb/Si(111) where the Pb-substrate exchange interaction increases the bandwidth by more than a factor 1.5 with respect to DFT+U, in better agreement with STS data. The delicate interplay between substrate, structural and electronic degrees of freedom invalidates the widespread interpretation available in literature considering these compounds as physical realizations of single band Hubbard models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا