We present an analysis of the anisotropic flow harmonics in Pb+Pb collisions at beam momenta of 30$A$ GeV/$c$ collected by the NA61/SHINE experiment in the year 2016. Directed and elliptic flow coefficients are measured relative to the spectator plane estimated with the Projectile Spectators Detector (PSD). The flow coefficients are reported as a function of transverse momentum in different classes of collision centrality. The results are compared with a new analysis of the NA49 data for Pb+Pb collisions at 40$A$ GeV using forward calorimeters (VCal and RCal) for event plane estimation.
The J/$psi$ azimuthal distribution relative to the reaction plane has been measured by the NA50 experiment in Pb-Pb collisions at 158 GeV/nucleon. Various physical mechanisms related to charmonium dissociation in the medium created in the heavy ion collision are expected to introduce an anisotropy in the azimuthal distribution of the observed J/$psi$ mesons at SPS energies. Hence, the measurement of J/$psi$ elliptic anisotropy, quantified by the Fourier coefficient v$_2$ of the J/$psi$ azimuthal distribution relative to the reaction plane, is an important tool to constrain theoretical models aimed at explaining the anomalous J/$psi$ suppression observed in Pb-Pb collisions. We present the measured J/$psi$ yields in different bins of azimuthal angle relative to the reaction plane, as well as the resulting values of the Fourier coefficient v$_{2}$ as a function of the collision centrality and of the J/$psi$ transverse momentum. The reaction plane has been estimated from the azimuthal distribution of the neutral transverse energy detected in an electromagnetic calorimeter. The analysis has been performed on a data sample of about 100 000 events, distributed in five centrality or p$_{rm T}$ sub-samples. The extracted v$_{2}$ values are significantly larger than zero for non-central collisions and are seen to increase with p$_{rm T}$.
The elliptic flow of Lambda hyperons has been measured by the NA49 collaboration at the CERN-SPS in semi-central Pb+Pb collisions at 158A GeV. The standard method of correlating particles with the event plane was used. Measurements of v2 near mid-rapidity are reported as a function of rapidity, centrality and transverse momentum. Elliptic flow of Lambda particles increases both with the impact parameter and with the transverse momentum. It is compared with v2 for pions and protons as well as with model calculations. The observation of significant elliptic flow and its mass dependence suggest strong collective behaviour of the matter produced in collisions of heavy nuclei already at the SPS. Scaling properties of elliptic flow of different particle species have been tested at 158A GeV. The limited pT range of the data does not allow for a decisive test of the coalescence model.
Results are presented on neutral kaon, hyperon and antihyperon production in Pb-Pb and p-Be interactions at 40 GeV/c per nucleon. The enhancement pattern follows the same hierarchy as seen in the higher energy data - the enhancement increases with the strangeness content of the hyperons and with the centrality of collision. The centrality dependence of the Pb-Pb yields and enhancements is steeper at 40 than at 158 A GeV/c. The energy dependence of strangeness enhancements at mid-rapidity is discussed.
Results are presented on hyperon and antihyperon production in Pb-Pb, pPb and pBe collisions at 158 GeV/c per nucleon. Lambda, Xi and Omega yields have been measured at central rapidity and medium transverse momentum as functions of the centrality of the collision. Comparing the yields in Pb-Pb to those in pBe interactions, strangeness enhancement is observed. The enhancement increases with the centrality and with the strangeness content of the hyperons, reaching a factor of about 20 for the Omega in the central Pb-Pb collisions.
The elliptic and triangular flow coefficients ($mathrm{v_n, , n=2,3}$) measured in Pb+Pb ($sqrt{s_{_{rm NN}}} = 2.76$ TeV) and p+Pb ($sqrt{s_{_{rm NN}}} = 5.02$ TeV) collisions, are studied as a function of initial-state eccentricity ($varepsilon_n$), and dimensionless size characterized by the cube root of the mid-rapidity charged hadron multiplicity density $mathrm{left< N_{ch} right>^{1/3}}$. The results indicate that the influence of eccentricity ($mathrm{v_n} propto varepsilon_n$) observed for large $mathrm{left< N_{ch} right>}$, is superseded by the effects of viscous attenuation for small $mathrm{left< N_{ch} right>}$, irrespective of the colliding species. Strikingly similar acoustic scaling patterns of exponential viscous modulation, with a damping rate proportional to $mathrm{n^2}$ and inversely proportional to the dimensionless size, are observed for the eccentricity-scaled coefficients for the two sets of colliding species. The resulting scaling parameters suggest that, contrary to current predilections, the patterns of viscous attenuation, as well as the specific shear viscosity $left<frac{eta}{s}(text{T})right>$ for the matter created in p+Pb and Pb+Pb collisions, are comparable.
V. Klochkov
,I. Selyuzhenkov
.
(2018)
.
"NA61/SHINE measurements of anisotropic flow relative to the spectator plane in Pb+Pb collisions at $30$A GeV/$c$"
.
Ilya Selyuzhenkov Dr.
هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا