No Arabic abstract
The J/$psi$ azimuthal distribution relative to the reaction plane has been measured by the NA50 experiment in Pb-Pb collisions at 158 GeV/nucleon. Various physical mechanisms related to charmonium dissociation in the medium created in the heavy ion collision are expected to introduce an anisotropy in the azimuthal distribution of the observed J/$psi$ mesons at SPS energies. Hence, the measurement of J/$psi$ elliptic anisotropy, quantified by the Fourier coefficient v$_2$ of the J/$psi$ azimuthal distribution relative to the reaction plane, is an important tool to constrain theoretical models aimed at explaining the anomalous J/$psi$ suppression observed in Pb-Pb collisions. We present the measured J/$psi$ yields in different bins of azimuthal angle relative to the reaction plane, as well as the resulting values of the Fourier coefficient v$_{2}$ as a function of the collision centrality and of the J/$psi$ transverse momentum. The reaction plane has been estimated from the azimuthal distribution of the neutral transverse energy detected in an electromagnetic calorimeter. The analysis has been performed on a data sample of about 100 000 events, distributed in five centrality or p$_{rm T}$ sub-samples. The extracted v$_{2}$ values are significantly larger than zero for non-central collisions and are seen to increase with p$_{rm T}$.
We present the combined results on electron-pair production in 158 GeV/n {Pb-Au} ($sqrt{s}$= 17.2 GeV) collisions taken at the CERN SPS in 1995 and 1996, and give a detailed account of the data analysis. The enhancement over the reference of neutral meson decays amounts to a factor of 2.31$pm0.19 (stat.)pm0.55 (syst.)pm0.69 (decays)$ for semi-central collisions (28% $sigma/sigma_{geo}$) when yields are integrated over $m>$ 200 MeV/$c^2$ in invariant mass. The measured yield, its stronger-than-linear scaling with $N_{ch}$, and the dominance of low pair $p_t$ strongly suggest an interpretation as {it thermal radiation} from pion annihilation in the hadronic fireball. The shape of the excess centring at $mapprox$ 500 MeV/$c^2$, however, cannot be described without strong medium modifications of the $rho$ meson. The results are put into perspective by comparison to predictions from Brown-Rho scaling governed by chiral symmetry restoration, and from the spectral-function many-body treatment in which the approach to the phase boundary is less explicit.
Results of the production of Xi and Xi-bar hyperons in central Pb+Pb interactions at 158 GeV/c per nucleon are presented. This analysis utilises a global reconstruction procedure, which allows a measurement of 4pi integrated yields to be made for the first time. Inverse slope paramters, which are determined from an exponential fit to the transverse mass spectra, are shown. Central rapidity densities are found to be 1.49 +- 0.08 and 0.33 +- 0.04 per event per unit of rapidity for Xi and Xi-bar respectively. Yields integrated to full phase space are 4.12 +- 0.02 and 0.77 +- 0.04 for Xi and Xi-bar. The ratio of Xi-bar/Xi at mid-rapidity is 0.22 +- 0.03.
Charged particle multiplicities from high multiplicity central interactions of 158 GeV/nucleon Pb ions with Pb target nuclei have been measured in the central and far forward projectile spectator regions using emulsion chambers. Multiplicities are significantly lower than predicted by Monte Carlo simulations. We examine the shape of the pseudorapidity distribution and its dependence on centrality in detail.
The NA60 experiment has studied J/$psi$ production in Indium-Indium collisions at 158 A$cdot$GeV. In this paper we present an updated set of results obtained with the complete set of available statistics and an improved alignment of the vertex tracker. The centrality dependence of the J/$psi$ production, obtained with an analysis technique based only on the J/$psi$ sample, indicates that a suppression beyond that induced by nuclear absorption is present in In-In collisions, setting in at $sim$80 participant nucleons. A first study of the systematic errors related with this measurement is discussed. We also present preliminary results on the J/$psi$ azimuthal distributions.
The NA60 experiment studies muon pair production at the CERN SPS. In this letter we report on a precision measurement of J/psi in In-In collisions. We have studied the J/psi centrality distribution, and we have compared it with the one expected if absorption in cold nuclear matter were the only active suppression mechanism. For collisions involving more than ~80 participant nucleons, we find that an extra suppression is present. This result is in qualitative agreement with previous Pb-Pb measurements by the NA50 experiment, but no theoretical explanation is presently able to coherently describe both results.