Do you want to publish a course? Click here

Axiomatising Infinitary Probabilistic Weak Bisimilarity of Finite-State Behaviours

64   0   0.0 ( 0 )
 Added by Rob van Glabbeek
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In concurrency theory, weak bisimilarity is often used to relate processes exhibiting the same observable behaviour. The probabilistic environment gives rise to several generalisations; we study the infinitary semantics, which abstracts from a potentially unbounded number of internal actions being performed when something observable happens. Arguing that this notion yields the most desirable properties, we provide a sound and complete axiomatisation capturing its essence. Previous research has failed to achieve completeness in the presence of unguarded recursion, as only the finitary variant has been axiomatised, yet.



rate research

Read More

A new weak bisimulation semantics is defined for Markov automata that, in addition to abstracting from internal actions, sums up the expected values of consecutive exponentially distributed delays possibly intertwined with internal actions. The resulting equivalence is shown to be a congruence with respect to parallel composition for Markov automata. Moreover, it turns out to be comparable with weak bisimilarity for timed labeled transition systems, thus constituting a step towards reconciling the semantics for stochastic time and deterministic time.
The probabilistic bisimilarity distance of Deng et al. has been proposed as a robust quantitative generalization of Segala and Lynchs probabilistic bisimilarity for probabilistic automata. In this paper, we present a characterization of the bisimilarity distance as the solution of a simple stochastic game. The characterization gives us an algorithm to compute the distances by applying Condons simple policy iteration on these games. The correctness of Condons approach, however, relies on the assumption that the games are stopping. Our games may be non-stopping in general, yet we are able to prove termination for this extended class of games. Already other algorithms have been proposed in the literature to compute these distances, with complexity in $textbf{UP} cap textbf{coUP}$ and textbf{PPAD}. Despite the theoretical relevance, these algorithms are inefficient in practice. To the best of our knowledge, our algorithm is the first practical solution. The characterization of the probabilistic bisimilarity distance mentioned above crucially uses a dual presentation of the Hausdorff distance due to Memoli. As an additional contribution, in this paper we show that Memolis result can be used also to prove that the bisimilarity distance bounds the difference in the maximal (or minimal) probability of two states to satisfying arbitrary $omega$-regular properties, expressed, eg., as LTL formulas.
In 1992 Wang & Larsen extended the may- and must preorders of De Nicola and Hennessy to processes featuring probabilistic as well as nondeterministic choice. They concluded with two problems that have remained open throughout the years, namely to find complete axiomatisations and alternative characterisations for these preorders. This paper solves both problems for finite processes with silent moves. It characterises the may preorder in terms of simulation, and the must preorder in terms of failure simulation. It also gives a characterisation of both preorders using a modal logic. Finally it axiomatises both preorders over a probabilistic version of CSP.
We consider the relational characterisation of branching bisimilarity with explicit divergence. We prove that it is an equivalence and that it coincides with the original definition of branching bisimilarity with explicit divergence in terms of coloured traces. We also establish a correspondence with several variants of an action-based modal logic with until- and divergence modalities.
299 - C.A. Middelburg 2021
A variant of the standard notion of branching bisimilarity for processes with discrete relative timing is proposed which is coarser than the standard notion. Using a version of ACP (Algebra of Communicating Processes) with abstraction for processes with discrete relative timing, it is shown that the proposed variant allows of the functional correctness of the PAR (Positive Acknowledgement with Retransmission) protocol as well as its performance properties to be analyzed. In the version of ACP concerned, the difference between the standard notion and its proposed variant is characterized by a single axiom schema.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا