No Arabic abstract
The probabilistic bisimilarity distance of Deng et al. has been proposed as a robust quantitative generalization of Segala and Lynchs probabilistic bisimilarity for probabilistic automata. In this paper, we present a characterization of the bisimilarity distance as the solution of a simple stochastic game. The characterization gives us an algorithm to compute the distances by applying Condons simple policy iteration on these games. The correctness of Condons approach, however, relies on the assumption that the games are stopping. Our games may be non-stopping in general, yet we are able to prove termination for this extended class of games. Already other algorithms have been proposed in the literature to compute these distances, with complexity in $textbf{UP} cap textbf{coUP}$ and textbf{PPAD}. Despite the theoretical relevance, these algorithms are inefficient in practice. To the best of our knowledge, our algorithm is the first practical solution. The characterization of the probabilistic bisimilarity distance mentioned above crucially uses a dual presentation of the Hausdorff distance due to Memoli. As an additional contribution, in this paper we show that Memolis result can be used also to prove that the bisimilarity distance bounds the difference in the maximal (or minimal) probability of two states to satisfying arbitrary $omega$-regular properties, expressed, eg., as LTL formulas.
The paper addresses the problem of computing maximal expected time to termination of probabilistic timed automata (PTA) models, under the condition that the system will, eventually, terminate. This problem can exhibit high computational complexity, in particular when the automaton under analysis contains cycles that may be repeated very often (due to very high probabilities, e.g. p =0.999). Such cycles can degrade the performance of typical model checking algorithms, as the likelihood of repeating the cycle converges to zero arbitrarily slowly. We introduce an acceleration technique that can be applied to improve the execution of such cycles by collapsing their iterations. The acceleration process of a cyclic PTA consists of several formal steps necessary to handle the cumulative timing and probability information that result from successive executions of a cycle. The advantages of acceleration are twofold. First, it helps to reduce the computational complexity of the problem without adversely affecting the outcome of the analysis. Second, it can bring the worst case execution time problem of PTAs within the bounds of feasibility for model checking techniques. To our knowledge, this is the first work that addresses the problem of accelerating execution of cycles that exhibit both timing and probabilistic behavior.
In [1], we introduced the weakly synchronizing languages for probabilistic automata. In this report, we show that the emptiness problem of weakly synchronizing languages for probabilistic automata is undecidable. This implies that the decidability result of [1-3] for the emptiness problem of weakly synchronizing language is incorrect.
Providing compact and understandable counterexamples for violated system properties is an essential task in model checking. Existing works on counterexamples for probabilistic systems so far computed either a large set of system runs or a subset of the systems states, both of which are of limited use in manual debugging. Many probabilistic systems are described in a guarded command language like the one used by the popular model checker PRISM. In this paper we describe how a smallest possible subset of the commands can be identified which together make the system erroneous. We additionally show how the selected commands can be further simplified to obtain a well-understandable counterexample.
This short note aims at proving that the isolation problem is undecidable for probabilistic automata with only one probabilistic transition. This problem is known to be undecidable for general probabilistic automata, without restriction on the number of probabilistic transitions. In this note, we develop a simulation technique that allows to simulate any probabilistic automaton with one having only one probabilistic transition.
We characterize the class of nondeterministic ${omega}$-automata that can be used for the analysis of finite Markov decision processes (MDPs). We call these automata `good-for-MDPs (GFM). We show that GFM automata are closed under classic simulation as well as under more powerful simulation relations that leverage properties of optimal control strategies for MDPs. This closure enables us to exploit state-space reduction techniques, such as those based on direct and delayed simulation, that guarantee simulation equivalence. We demonstrate the promise of GFM automata by defining a new class of automata with favorable properties - they are Buchi automata with low branching degree obtained through a simple construction - and show that going beyond limit-deterministic automata may significantly benefit reinforcement learning.