No Arabic abstract
A variant of the standard notion of branching bisimilarity for processes with discrete relative timing is proposed which is coarser than the standard notion. Using a version of ACP (Algebra of Communicating Processes) with abstraction for processes with discrete relative timing, it is shown that the proposed variant allows of the functional correctness of the PAR (Positive Acknowledgement with Retransmission) protocol as well as its performance properties to be analyzed. In the version of ACP concerned, the difference between the standard notion and its proposed variant is characterized by a single axiom schema.
We consider the relational characterisation of branching bisimilarity with explicit divergence. We prove that it is an equivalence and that it coincides with the original definition of branching bisimilarity with explicit divergence in terms of coloured traces. We also establish a correspondence with several variants of an action-based modal logic with until- and divergence modalities.
We prove that rooted divergence-preserving branching bisimilarity is a congruence for the process specification language consisting of nil, action prefix, choice, and the recursion construct.
Intruders can infer properties of a system by measuring the time it takes for the system to respond to some request of a given protocol, that is, by exploiting time side channels. These properties may help intruders distinguish whether a system is a honeypot or concrete system helping him avoid defense mechanisms, or track a user among others violating his privacy. Observational equivalence is the technical machinery used for verifying whether two systems are distinguishable. Moreover, efficient symbolic methods have been developed for automating the check of observational equivalence of systems. This paper introduces a novel definition of timed observational equivalence which also distinguishes systems according to their time side channels. Moreover, as our definition uses symbolic time constraints, it can be automated by using SMT-solvers.
We propose a distance between continuous-time Markov chains (CTMCs) and study the problem of computing it by comparing three different algorithmic methodologies: iterative, linear program, and on-the-fly. In a work presented at FoSSaCS12, Chen et al. characterized the bisimilarity distance of Desharnais et al. between discrete-time Markov chains as an optimal solution of a linear program that can be solved by using the ellipsoid method. Inspired by their result, we propose a novel linear program characterization to compute the distance in the continuous-time setting. Differently from previous proposals, ours has a number of constraints that is bounded by a polynomial in the size of the CTMC. This, in particular, proves that the distance we propose can be computed in polynomial time. Despite its theoretical importance, the proposed linear program characterization turns out to be inefficient in practice. Nevertheless, driven by the encouraging results of our previous work presented at TACAS13, we propose an efficient on-the-fly algorithm, which, unlike the other mentioned solutions, computes the distances between two given states avoiding an exhaustive exploration of the state space. This technique works by successively refining over-approximations of the target distances using a greedy strategy, which ensures that the state space is further explored only when the current approximations are improved. Tests performed on a consistent set of (pseudo)randomly generated CTMCs show that our algorithm improves, on average, the efficiency of the corresponding iterative and linear program methods with orders of magnitude.
We solve some decision problems for timed automata which were recently raised by S. Tripakis in [ Folk Theorems on the Determinization and Minimization of Timed Automata, in the Proceedings of the International Workshop FORMATS2003, LNCS, Volume 2791, p. 182-188, 2004 ] and by E. Asarin in [ Challenges in Timed Languages, From Applied Theory to Basic Theory, Bulletin of the EATCS, Volume 83, p. 106-120, 2004 ]. In particular, we show that one cannot decide whether a given timed automaton is determinizable or whether the complement of a timed regular language is timed regular. We show that the problem of the minimization of the number of clocks of a timed automaton is undecidable. It is also undecidable whether the shuffle of two timed regular languages is timed regular. We show that in the case of timed Buchi automata accepting infinite timed words some of these problems are Pi^1_1-hard, hence highly undecidable (located beyond the arithmetical hierarchy).