Do you want to publish a course? Click here

Spitzer Planck Herschel Infrared Cluster (SPHerIC) survey: Candidate galaxy clusters at 1.3 < z < 3 selected by high star-formation rate

121   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

There is a lack of large samples of spectroscopically confirmed clusters and protoclusters at high redshifts, $z>$1.5. Discovering and characterizing distant (proto-)clusters is important for yielding insights into the formation of large-scale structure and on the physical processes responsible for regulating star-formation in galaxies in dense environments. The Spitzer Planck Herschel Infrared Cluster (SPHerIC) survey was initiated to identify these characteristically faint and dust-reddened sources during the epoch of their early assembly. We present Spitzer IRAC observations of 82 galaxy (proto-)cluster candidates at 1.3<$z_p$<3.0 that were vetted in a two step process: (1) using Planck to select by color those sources with the highest star-formation rates, and (2) using Herschel at higher resolution to separate out the individual red sources. The addition of the Spitzer data enables efficient detection of the central and massive brightest red cluster galaxies (BRCGs). We find that BRCGs are associated with highly significant, extended and crowded regions of IRAC sources which are more overdense than the field. This result corroborates our hypothesis that BRCGs within the Planck - Herschel sources trace some of the densest and actively star-forming proto-clusters in the early Universe. On the basis of a richness-mass proxy relation, we obtain an estimate of their mean masses which suggests our sample consists of some of the most massive clusters at z$approx$2 and are the likely progenitors of the most massive clusters observed today.



rate research

Read More

We present 279 galaxy cluster candidates at $z > 1.3$ selected from the 94 deg$^{2}$ Spitzer South Pole Telescope Deep Field (SSDF) survey. We use a simple algorithm to select candidate high-redshift clusters of galaxies based on Spitzer/IRAC mid-infrared data combined with shallow all-sky optical data. We identify distant cluster candidates in SSDF adopting an overdensity threshold that results in a high purity (80%) cluster sample based on tests in the Spitzer Deep, Wide-Field Survey of the Bootes field. Our simple algorithm detects all three $1.4 < z leq 1.75$ X-ray detected clusters in the Bootes field. The uniqueness of the SSDF survey resides not just in its area, one of the largest contiguous extragalactic fields observed with Spitzer, but also in its deep, multi-wavelength coverage by the South Pole Telescope (SPT), Herschel/SPIRE and XMM-Newton. This rich dataset will allow direct or stacked measurements of Sunyaev-Zeldovich effect decrements or X-ray masses for many of the SSDF clusters presented here, and enable systematic study of the most distant clusters on an unprecedented scale. We measure the angular correlation function of our sample and find that these candidates show strong clustering. Employing the COSMOS/UltraVista photometric catalog in order to infer the redshift distribution of our cluster selection, we find that these clusters have a comoving number density $n_c = (0.7^{+6.3}_{-0.6}) times 10^{-7} h^{3} mathrm{Mpc}^{-3}$ and a spatial clustering correlation scale length $r_0 = (32 pm 7) h^{-1} rm{Mpc}$. Assuming our sample is comprised of dark matter halos above a characteristic minimum mass, $M_{{rm min}}$, we derive that at $z=1.5$ these clusters reside in halos larger than $M_{{rm min}} = 1.5^{+0.9}_{-0.7} times 10^{14} h^{-1} M_{odot}$. (abridged)
115 - C. Papovich 2010
We report the discovery of a galaxy cluster at z=1.62 located in the Spitzer Wide-Area Infrared Extragalactic survey XMM-LSS field. This structure was selected solely as an overdensity of galaxies with red Spitzer/IRAC colors, satisfying [3.6]-[4.5] > -0.1 AB mag. Photometric redshifts derived from Subaru XMM Deep Survey (BViz-bands), UKIRT Infrared Deep Survey-Ultra-Deep Survey (UKIDSS-UDS, JK-bands), and from the Spitzer Public UDS survey (3.6-8.0 micron) show that this cluster corresponds to a surface density of galaxies at z ~ 1.6 that is more than 20 sigma above the mean at this redshift. We obtained optical spectroscopic observations of galaxies in the cluster region using IMACS on the Magellan telescope. We measured redshifts for seven galaxies in the range z=1.62-1.63 within 2.8 arcmin (<1.4 Mpc) of the astrometric center of the cluster. A posteriori analysis of the XMM data in this field reveal a weak (4 sigma) detection in the [0.5-2 keV] band compatible with the expected thermal emission from such a cluster. The color-magnitude diagram of the galaxies in this cluster shows a prominent red-sequence, dominated by a population of red galaxies with (z-J) > 1.7 mag. The photometric redshift probability distributions for the red galaxies are strongly peaked at z=1.62, coincident with the spectroscopically confirmed galaxies. The rest-frame (U-B) color and scatter of galaxies on the red-sequence are consistent with a mean luminosity-weighted age of 1.2 +/- 0.1 Gyr, yielding a formation redshift z_f = 2.35 +/- 0.10, and corresponding to the last significant star-formation period in these galaxies.
This paper presents preliminary results of a spectroscopic survey being conducted at the VLT of fields with optically-selected cluster candidates identified in the EIS I-band survey. Here we report our findings for three candidates selected for having estimated redshifts in the range z=0.8-1.1. New multi-band optical/infrared data were used to assign photometric redshifts to galaxies in the cluster fields and to select possible cluster members in preparation of the spectroscopic observations. Based on the available spectroscopic data, which includes 147 new redshifts for galaxies with Iab<22-23, we confirm the detection of four density enhancements at a confidence level >99%. The detected concentrations include systems with redshifts z=0.81, z=0.95, z=1.14 and the discovery of the first optically-selected cluster at z=1.3. The latter system, with three concordant redshifts, coincides remarkably well with the location of a firm X-ray detection (>5sigma) in a ~80ksec XMM-Newton image taken as part of this program which will be presented in a future paper (Neumann et al. 2002). The z>1 systems presented here are possibly the most distant identified so far by their optical properties alone.
We report the X-ray detection of two z>1.4 infrared-selected galaxy clusters from the IRAC Shallow Cluster Survey (ISCS). We present new data from the Hubble Space Telescope and the W. M. Keck Observatory that spectroscopically confirm cluster ISCS J1432.4+3250 at z=1.49, the most distant of 18 confirmed z>1 clusters in the ISCS to date. We also present new spectroscopy for ISCS J1438.1+3414, previously reported at z = 1.41, and measure its dynamical mass. Clusters ISCS J1432.4+3250 and ISCS J1438.1+3414 are detected in 36ks and 143ks Chandra exposures at significances of 5.2 sigma and 9.7 sigma, from which we measure total masses of log(M_{200,Lx}/Msun) = 14.4 +/- 0.2 and 14.35^{+0.14}_{-0.11}, respectively. The consistency of the X-ray and dynamical properties of these high redshift clusters further demonstrates that the ISCS is robustly detecting massive clusters to at least z = 1.5.
By determining the nature of all the Planck compact sources within 808.4 deg^2 of large Herschel surveys, we have identified 27 candidate proto-clusters of dusty star forming galaxies (DSFGs) that are at least 3{sigma} overdense in either 250, 350 or 500 $mu$mm sources. We find roughly half of all the Planck compact sources are resolved by Herschel into multiple discrete objects, with the other half remaining unresolved by Herschel. We find a significant difference betwe
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا