No Arabic abstract
We report the discovery of a galaxy cluster at z=1.62 located in the Spitzer Wide-Area Infrared Extragalactic survey XMM-LSS field. This structure was selected solely as an overdensity of galaxies with red Spitzer/IRAC colors, satisfying [3.6]-[4.5] > -0.1 AB mag. Photometric redshifts derived from Subaru XMM Deep Survey (BViz-bands), UKIRT Infrared Deep Survey-Ultra-Deep Survey (UKIDSS-UDS, JK-bands), and from the Spitzer Public UDS survey (3.6-8.0 micron) show that this cluster corresponds to a surface density of galaxies at z ~ 1.6 that is more than 20 sigma above the mean at this redshift. We obtained optical spectroscopic observations of galaxies in the cluster region using IMACS on the Magellan telescope. We measured redshifts for seven galaxies in the range z=1.62-1.63 within 2.8 arcmin (<1.4 Mpc) of the astrometric center of the cluster. A posteriori analysis of the XMM data in this field reveal a weak (4 sigma) detection in the [0.5-2 keV] band compatible with the expected thermal emission from such a cluster. The color-magnitude diagram of the galaxies in this cluster shows a prominent red-sequence, dominated by a population of red galaxies with (z-J) > 1.7 mag. The photometric redshift probability distributions for the red galaxies are strongly peaked at z=1.62, coincident with the spectroscopically confirmed galaxies. The rest-frame (U-B) color and scatter of galaxies on the red-sequence are consistent with a mean luminosity-weighted age of 1.2 +/- 0.1 Gyr, yielding a formation redshift z_f = 2.35 +/- 0.10, and corresponding to the last significant star-formation period in these galaxies.
Context: Very few z > 1.5 clusters of galaxies are known. It is important to study the properties of galaxies in these clusters and the ICM and, further, to cross-check the reliability of the various mass estimates. This will help to clarify the process of structure formation and how distant clusters may be used to constrain cosmology. AIMS: We present a 84 ks Chandra observation of IRC-0218A, a cluster of galaxies inferred by the presence of a galaxy overdensity in the infrared at a redshift of 1.62 and associated with some XMM emission Methods: Spatial analysis of the Chandra X-ray photon distribution. Results: The Chandra observation of IRC-0218A appears to be entirely dominated by a point-source located at the centroid of the MIR galaxy density. In addition, we detect weak extended emission (2.3 sigma) out to a radius of 25 with a flux of ~ 3 10E-15 erg/s/cm2 in the [0.3-2]keV band. Assuming that clusters evolve similarly, we infer a virial mass of M200 =7.7+/-3.8 10E13Mo. This is marginally compatible with our current estimate of the cluster dynamical mass (based on 10 redshifts), although there is no evidence that the galaxy peculiar velocities correspond to the motions of a virialized structure. The stellar mass enclosed in the inferred X-ray virial radius is estimated to 1-2 10E12 Mo. We provide a detailed account of 28 X-ray point-sources detected in the field.
We identify a strong lensing galaxy in the cluster IRC 0218 (also known as XMM-LSS J02182$-$05102) that is spectroscopically confirmed to be at $z=1.62$, making it the highest-redshift strong lens galaxy known. The lens is one of the two brightest cluster galaxies and lenses a background source galaxy into an arc and a counterimage. With Hubble Space Telescope (HST) grism and Keck/LRIS spectroscopy, we measure the source redshift to be $z_{rm S}=2.26$. Using HST imaging in ACS/F475W, ACS/F814W, WFC3/F125W, and WFC3/F160W, we model the lens mass distribution with an elliptical power-law profile and account for the effects of the cluster halo and nearby galaxies. The Einstein radius is $theta_{rm E}=0.38^{+0.02}_{-0.01}$ ($3.2_{-0.1}^{+0.2}$ kpc) and the total enclosed mass is M$_{rm tot} (< theta_{rm E})=1.8^{+0.2}_{-0.1}times10^{11}~{rm M}_{odot}$. We estimate that the cluster environment contributes $sim10$% of this total mass. Assuming a Chabrier IMF, the dark matter fraction within $theta_{{rm E}}$ is $f_{rm DM}^{{rm Chab}} = 0.3_{-0.3}^{+0.1}$, while a Salpeter IMF is marginally inconsistent with the enclosed mass ($f_{rm DM}^{{rm Salp}} = -0.3_{-0.5}^{+0.2}$). The total magnification of the source is $mu_{rm tot}=2.1_{-0.3}^{+0.4}$. The source has at least one bright compact region offset from the source center. Emission from Ly$alpha$ and [O III] are likely to probe different regions in the source.
We report the discovery of an IR-selected massive galaxy cluster in the IRAC Distant Cluster Survey (IDCS). We present new data from the Hubble Space Telescope and the W. M. Keck Observatory that spectroscopically confirm IDCS J1426+3508 at z=1.75. Moreover, the cluster is detected in archival Chandra data as an extended X-ray source, comprising 54 counts after the removal of point sources. We calculate an X-ray luminosity of L{0.5-2 keV} = (5.5 +/- 1.2) X 1e44 ergs/s within r = 60 arcsec (~1 Mpc diameter), which implies M_{200,L_x} = (5.6 +/- 1.6) X 1e14 Msun. IDCS J1426+3508 appears to be an exceptionally massive cluster for its redshift.
There is a lack of large samples of spectroscopically confirmed clusters and protoclusters at high redshifts, $z>$1.5. Discovering and characterizing distant (proto-)clusters is important for yielding insights into the formation of large-scale structure and on the physical processes responsible for regulating star-formation in galaxies in dense environments. The Spitzer Planck Herschel Infrared Cluster (SPHerIC) survey was initiated to identify these characteristically faint and dust-reddened sources during the epoch of their early assembly. We present Spitzer IRAC observations of 82 galaxy (proto-)cluster candidates at 1.3<$z_p$<3.0 that were vetted in a two step process: (1) using Planck to select by color those sources with the highest star-formation rates, and (2) using Herschel at higher resolution to separate out the individual red sources. The addition of the Spitzer data enables efficient detection of the central and massive brightest red cluster galaxies (BRCGs). We find that BRCGs are associated with highly significant, extended and crowded regions of IRAC sources which are more overdense than the field. This result corroborates our hypothesis that BRCGs within the Planck - Herschel sources trace some of the densest and actively star-forming proto-clusters in the early Universe. On the basis of a richness-mass proxy relation, we obtain an estimate of their mean masses which suggests our sample consists of some of the most massive clusters at z$approx$2 and are the likely progenitors of the most massive clusters observed today.
We present the recent merger history of massive galaxies in a spectroscopically-confirmed proto-cluster at z=1.62. Using HST WFC3 near-infrared imaging from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS), we select cluster galaxies and z ~ 1.6 field galaxies with M_star >= 3 x 10^10 M_sun, and determine the frequency of double nuclei or close companions with projected separations less than 20 kpc co-moving and stellar mass ratios between 1:1 and roughly 10:1. We find that four out of five spectroscopically-confirmed massive proto-cluster galaxies have double nuclei, and 42 +13/-25 % of all M_star >= 3 x 10^10 M_sun cluster candidates are either in close pair systems or have double nuclei. In contrast, only 4.5 +/- 2.6% of the field galaxies are in close pair/double nuclei systems. The implied merger rate per massive galaxy in the proto-cluster is 3-10 times higher than the merger rate of massive field galaxies at z ~ 1.6, depending upon the assumed mass ratios. Close pairs in the cluster have minor merger stellar mass ratios (M_primary:M_satellite ~ 6:1), while the field pairs are typically major mergers with stellar mass ratios between 1:1 and 4:1. At least half of the cluster mergers are dissipationless, as indicated by their red colors and low 24 micron fluxes. Two of the double-nucleated cluster members have X-ray detected AGN with L_x > 10^43 erg/s, and are strong candidates for dual or offset super-massive black holes. We conclude that the massive z = 1.62 proto-cluster galaxies are undergoing accelerated assembly relative to the field population, and discuss the implications for galaxy evolution in proto-cluster environments.