No Arabic abstract
We develop a novel data-driven robust model predictive control (DDRMPC) approach for automatic control of irrigation systems. The fundamental idea is to integrate both mechanistic models, which describe dynamics in soil moisture variations, and data-driven models, which characterize uncertainty in forecast errors of evapotranspiration and precipitation, into a holistic systems control framework. To better capture the support of uncertainty distribution, we take a new learning-based approach by constructing uncertainty sets from historical data. For evapotranspiration forecast error, the support vector clustering-based uncertainty set is adopted, which can be conveniently built from historical data. As for precipitation forecast errors, we analyze the dependence of their distribution on forecast values, and further design a tailored uncertainty set based on the properties of this type of uncertainty. In this way, the overall uncertainty distribution can be elaborately described, which finally contributes to rational and efficient control decisions. To assure the quality of data-driven uncertainty sets, a training-calibration scheme is used to provide theoretical performance guarantees. A generalized affine decision rule is adopted to obtain tractable approximations of optimal control problems, thereby ensuring the practicability of DDRMPC. Case studies using real data show that, DDRMPC can reliably maintain soil moisture above the safety level and avoid crop devastation. The proposed DDRMPC approach leads to a 40% reduction of total water consumption compared to the fine-tuned open-loop control strategy. In comparison with the carefully tuned rule-based control and certainty equivalent model predictive control, the proposed DDRMPC approach can significantly reduce the total water consumption and improve the control performance.
Appropriate greenhouse temperature should be maintained to ensure crop production while minimizing energy consumption. Even though weather forecasts could provide a certain amount of information to improve control performance, it is not perfect and forecast error may cause the temperature to deviate from the acceptable range. To inherent uncertainty in weather that affects control accuracy, this paper develops a data-driven robust model predictive control (MPC) approach for greenhouse temperature control. The dynamic model is obtained from thermal resistance-capacitance modeling derived by the Building Resistance-Capacitance Modeling (BRCM) toolbox. Uncertainty sets of ambient temperature and solar radiation are captured by support vector clustering technique, and they are further tuned for better quality by training-calibration procedure. A case study that implements the carefully chosen uncertainty sets on robust model predictive control shows that the data-driven robust MPC has better control performance compared to rule-based control, certainty equivalent MPC, and robust MPC.
A robust Learning Model Predictive Controller (LMPC) for uncertain systems performing iterative tasks is presented. At each iteration of the control task the closed-loop state, input and cost are stored and used in the controller design. This paper first illustrates how to construct robust invariant sets and safe control policies exploiting historical data. Then, we propose an iterative LMPC design procedure, where data generated by a robust controller at iteration $j$ are used to design a robust LMPC at the next $j+1$ iteration. We show that this procedure allows us to iteratively enlarge the domain of the control policy and it guarantees recursive constraints satisfaction, input to state stability and performance bounds for the certainty equivalent closed-loop system. The use of an adaptive prediction horizon is the key element of the proposed design. The effectiveness of the proposed control scheme is illustrated on a linear system subject to bounded additive disturbance.
We present a sample-based Learning Model Predictive Controller (LMPC) for constrained uncertain linear systems subject to bounded additive disturbances. The proposed controller builds on earlier work on LMPC for deterministic systems. First, we introduce the design of the safe set and value function used to guarantee safety and performance improvement. Afterwards, we show how these quantities can be approximated using noisy historical data. The effectiveness of the proposed approach is demonstrated on a numerical example. We show that the proposed LMPC is able to safely explore the state space and to iteratively improve the worst-case closed-loop performance, while robustly satisfying state and input constraints.
In order to enhance the performance of cyber-physical systems, this paper proposes the integrated de-sign of distributed controllers for distributed plants andthe control of the communication network. Conventionaldesign methods use static interfaces between both enti-ties and therefore rely on worst-case estimations of com-munication delay, often leading to conservative behaviorof the overall system. By contrast, the present approachestablishes a robust distributed model-predictive controlscheme, in which the local subsystem controllers oper-ate under the assumption of a variable communicationschedule that is predicted by a network controller. Us-ing appropriate models for the communication network,the network controller applies a predictive network policyfor scheduling the communication among the subsystemcontrollers across the network. Given the resulting time-varying predictions of the age of information, the papershows under which conditions the subsystem controllerscan robustly stabilize the distributed system. To illustratethe approach, the paper also reports on the application to avehicle platooning scenario.
In this paper we present a Learning Model Predictive Control (LMPC) strategy for linear and nonlinear time optimal control problems. Our work builds on existing LMPC methodologies and it guarantees finite time convergence properties for the closed-loop system. We show how to construct a time varying safe set and terminal cost function using closed-loop data. The resulting LMPC policy is time varying and it guarantees recursive constraint satisfaction and non-decreasing performance. Computational efficiency is obtained by convexifing the safe set and terminal cost function. We demonstrate that, for a class of nonlinear system and convex constraints, the convex LMPC formulation guarantees recursive constraint satisfaction and non-decreasing performance. Finally, we illustrate the effectiveness of the proposed strategies on minimum time obstacle avoidance and racing examples.