No Arabic abstract
We present a sample-based Learning Model Predictive Controller (LMPC) for constrained uncertain linear systems subject to bounded additive disturbances. The proposed controller builds on earlier work on LMPC for deterministic systems. First, we introduce the design of the safe set and value function used to guarantee safety and performance improvement. Afterwards, we show how these quantities can be approximated using noisy historical data. The effectiveness of the proposed approach is demonstrated on a numerical example. We show that the proposed LMPC is able to safely explore the state space and to iteratively improve the worst-case closed-loop performance, while robustly satisfying state and input constraints.
We consider the problem of stabilization of a linear system, under state and control constraints, and subject to bounded disturbances and unknown parameters in the state matrix. First, using a simple least square solution and available noisy measurements, the set of admissible values for parameters is evaluated. Second, for the estimated set of parameter values and the corresponding linear interval model of the system, two interval predictors are recalled and an unconstrained stabilizing control is designed that uses the predicted intervals. Third, to guarantee the robust constraint satisfaction, a model predictive control algorithm is developed, which is based on solution of an optimization problem posed for the interval predictor. The conditions for recursive feasibility and asymptotic performance are established. Efficiency of the proposed control framework is illustrated by numeric simulations.
A new adaptive predictive controller for constrained linear systems is presented. The main feature of the proposed controller is the partition of the input in two components. The first part is used to persistently excite the system, in order to guarantee accurate and convergent parameter estimates in a deterministic framework. An MPC-inspired receding horizon optimization problem is developed to achieve the required excitation in a manner that is optimal for the plant. The remaining control action is employed by a conventional tube MPC controller to regulate the plant in the presence of parametric uncertainty and the excitation generated for estimation purposes. Constraint satisfaction, robust exponential stability, and convergence of the estimates are guaranteed under design conditions mildly more demanding than that of standard MPC implementations.
We propose a Thompson sampling-based learning algorithm for the Linear Quadratic (LQ) control problem with unknown system parameters. The algorithm is called Thompson sampling with dynamic episodes (TSDE) where two stopping criteria determine the lengths of the dynamic episodes in Thompson sampling. The first stopping criterion controls the growth rate of episode length. The second stopping criterion is triggered when the determinant of the sample covariance matrix is less than half of the previous value. We show under some conditions on the prior distribution that the expected (Bayesian) regret of TSDE accumulated up to time T is bounded by O(sqrt{T}). Here O(.) hides constants and logarithmic factors. This is the first O(sqrt{T} ) bound on expected regret of learning in LQ control. By introducing a reinitialization schedule, we also show that the algorithm is robust to time-varying drift in model parameters. Numerical simulations are provided to illustrate the performance of TSDE.
A robust Learning Model Predictive Controller (LMPC) for uncertain systems performing iterative tasks is presented. At each iteration of the control task the closed-loop state, input and cost are stored and used in the controller design. This paper first illustrates how to construct robust invariant sets and safe control policies exploiting historical data. Then, we propose an iterative LMPC design procedure, where data generated by a robust controller at iteration $j$ are used to design a robust LMPC at the next $j+1$ iteration. We show that this procedure allows us to iteratively enlarge the domain of the control policy and it guarantees recursive constraints satisfaction, input to state stability and performance bounds for the certainty equivalent closed-loop system. The use of an adaptive prediction horizon is the key element of the proposed design. The effectiveness of the proposed control scheme is illustrated on a linear system subject to bounded additive disturbance.
We develop a novel data-driven robust model predictive control (DDRMPC) approach for automatic control of irrigation systems. The fundamental idea is to integrate both mechanistic models, which describe dynamics in soil moisture variations, and data-driven models, which characterize uncertainty in forecast errors of evapotranspiration and precipitation, into a holistic systems control framework. To better capture the support of uncertainty distribution, we take a new learning-based approach by constructing uncertainty sets from historical data. For evapotranspiration forecast error, the support vector clustering-based uncertainty set is adopted, which can be conveniently built from historical data. As for precipitation forecast errors, we analyze the dependence of their distribution on forecast values, and further design a tailored uncertainty set based on the properties of this type of uncertainty. In this way, the overall uncertainty distribution can be elaborately described, which finally contributes to rational and efficient control decisions. To assure the quality of data-driven uncertainty sets, a training-calibration scheme is used to provide theoretical performance guarantees. A generalized affine decision rule is adopted to obtain tractable approximations of optimal control problems, thereby ensuring the practicability of DDRMPC. Case studies using real data show that, DDRMPC can reliably maintain soil moisture above the safety level and avoid crop devastation. The proposed DDRMPC approach leads to a 40% reduction of total water consumption compared to the fine-tuned open-loop control strategy. In comparison with the carefully tuned rule-based control and certainty equivalent model predictive control, the proposed DDRMPC approach can significantly reduce the total water consumption and improve the control performance.